Highly sensitive and selective amperometric sensors for nanomolar detection of iodate and periodate based on glassy carbon electrode modified with iridium oxide nanoparticles

被引:28
|
作者
Salimi, Abdollah [1 ,2 ]
Hallaj, Rahman [1 ]
Kavosi, Begard [1 ]
Hagighi, Behzad [3 ]
机构
[1] Univ Kurdistan, Dept Chem, Sanandaj, Iran
[2] Univ Kurdistan, Res Ctr Nanotechnol, Sanandaj, Iran
[3] Inst Adv Studies Basic Sci, Dept Chem, Gava Zang, Zanjan, Iran
关键词
Iridium oxide; Nanoparticles; Iodate; Periodate; Flow injection analysis; Amperometry; ULTRA-TRACE AMOUNTS; FABRICATION; REDUCTION; BROMATE; DEPOSITION;
D O I
10.1016/j.aca.2009.12.005
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Iridium oxide nanoparticles are grown on a glassy carbon electrode by electrode positing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards reduction of iodate and periodate are studied. The reductions of both ions occur at the unusual positive peak potential of 0.7 V vs. reference electrode. The modified electrode is employed successfully for iodate and periodates detection using cyclic voltammetry, hydrodynamic amperometry and flow injection analysis (FIA). In the performed experiments, flow injection amperometric determination of iodate and periodate yielded calibration curves with the following characteristics: linear dynamic range up to 100 and 80 mu M, sensitivity of 140.9 and 150.6 nA mu M-1 and detection limits of 5 and 36nM, respectively. The repeatability of the modified electrode for 21 injections of 1.5 mu M of iodate solution is 1.5%. The interference effects of NO2-, NO3-, ClO3-, BrO3-. ClO4-. SO42-. Cu2+, Zn2+, Mn2+, Mg2+, Cd2+, Ca2+, Na+, K+, NH4+ and K+, CH3COO- and glucose were negligible at the concentration ratio of more than 1000. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective and a novel modified electrode to develop an iodate and periodate sensor. Sensitivity, selectivity, the liner concentration range and the detection limit of the developed sensor are all much better than all known similar sensors in the literature for iodate and periodate determination. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 34
页数:7
相关论文
共 50 条
  • [41] Amperometric Detection of Nitrite on Glassy Carbon Electrode Modified with Cobalt Nitroprusside
    Sabzi, R. E.
    PORTUGALIAE ELECTROCHIMICA ACTA, 2007, 25 (03) : 383 - 390
  • [42] Highly sensitive detection of hesperidin using AuNPs/rGO modified glassy carbon electrode
    Gao, Yang
    Wu, Xiufeng
    Wang, Hui
    Lu, Wenbo
    Guo, Mandong
    ANALYST, 2018, 143 (01) : 297 - 303
  • [43] A highly sensitive electrochemical sensor based on gold nanoparticles/multiwall carbon nanotubes-modified glassy carbon electrode for selective determination of traces of atenolol
    Shamsipur, Mojtaba
    Saber, Reza
    Emami, Mandi
    ANALYTICAL METHODS, 2014, 6 (17) : 7038 - 7045
  • [44] A Highly Selective and Sensitive Detection of Ellagic Acid by Using Ethylenediamine Ligand Based Cobalt (II) Complex Modified Glassy Carbon Electrode
    Sakthinathan, Subramanian
    Kokulnathan, Thangavelu
    Chen, Shen-Ming
    Chen, Tse-Wei
    Tseng, Tien-Wen
    Liu, Xiaoheng
    Liao, Wei Cheng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (07): : 6829 - 6841
  • [45] Application of a glassy carbon electrode modified with carbon black nanoparticles for highly sensitive voltammetric determination of quetiapine
    Lawrywianiec, M.
    Smajdor, J.
    Paczosa-Bator, B.
    Piech, R.
    ANALYTICAL METHODS, 2017, 9 (47) : 6662 - 6668
  • [46] Amperometric Highly Sensitive Uric Acid sensor Based on Manganese(III)porphyrin-Graphene Modified Glassy Carbon Electrode
    Guo, X. M.
    Guo, B.
    Li, C.
    Wang, Y. L.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 783 : 8 - 14
  • [47] A highly sensitive and selective electrochemical sensor based on polythiourea modified glassy carbon electrode for detecting fenitrothion in vegetables
    Yihun, Tihunie Fentahun
    Aragaw, Belete Asefa
    Tsegaye, Abebaw Adgo
    Tefera, Molla
    Ambo, Melaku Metto
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (10):
  • [48] Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles
    Qingxia Wang
    Haili Zhang
    Yiwei Wu
    Aimin Yu
    Microchimica Acta, 2012, 176 : 279 - 285
  • [49] Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles
    Wang, Qingxia
    Zhang, Haili
    Wu, Yiwei
    Yu, Aimin
    MICROCHIMICA ACTA, 2012, 176 (3-4) : 279 - 285
  • [50] Electrochemical Sensors with Antifouling Properties for Sensitive Detection of Isoproturon Based on Glassy Carbon Electrode Modified with Nafion Membrane
    Long, Xiaoyi
    Deng, Chaorui
    Xiao, Gansheng
    Cheng, Fuliang
    Zhou, Ying
    Zhao, Lei
    Cai, Longfei
    Chen, Jinyin
    Du, Juan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (06): : 4964 - 4977