Asymptotic behavior of edge-reinforced random walks

被引:8
|
作者
Merkl, Franz [1 ]
Rolles, Silke W. W.
机构
[1] Univ Munich, D-80539 Munich, Germany
[2] Tech Univ Munich, D-8000 Munich, Germany
来源
ANNALS OF PROBABILITY | 2007年 / 35卷 / 01期
关键词
reinforced random walk; convergence to equilibrium; random environment; Gibbs measure;
D O I
10.1214/009117906000000674
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study linearly edge-reinforced random walk on general multi-level ladders for large initial edge weights. For infinite ladders, we show that the process can be represented as a random walk in a random environment, given by random weights on the edges. The edge weights decay exponentially in space. The process converges to a stationary process. We provide asymptotic bounds for the range of the random walker up to a given time, showing that it localizes much more than an ordinary random walker. The random environment is described in terms of an infinite-volume Gibbs measure.
引用
收藏
页码:115 / 140
页数:26
相关论文
共 50 条
  • [32] Edge-reinforced attention network for smoke semantic segmentation
    Zhang, Lin
    Yuan, Feiniu
    Xia, Xue
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31259 - 31284
  • [33] Extracting High-Fidelity Smaller Scale Subgraphs of Complex Networks by Edge-Reinforced Random Walk
    Chen, Dan
    Su, Housheng
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05) : 1 - 11
  • [34] Edge-reinforced attention network for smoke semantic segmentation
    Lin Zhang
    Feiniu Yuan
    Xue Xia
    Multimedia Tools and Applications, 2023, 82 : 31259 - 31284
  • [35] Asymptotic behaviour for random walks in random environments
    Alili, S
    JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) : 334 - 349
  • [36] Asymptotic direction for random walks in random environments
    Simenhaus, Francois
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (06): : 751 - 761
  • [37] ASYMPTOTIC-BEHAVIOR OF VARIANCE OF RENEWAL PROCESSES AND RANDOM-WALKS
    DALEY, DJ
    MOHAN, NR
    ANNALS OF PROBABILITY, 1978, 6 (03): : 516 - 521
  • [38] ASYMPTOTIC BEHAVIOR OF THE EDGE METRIC DIMENSION OF THE RANDOM GRAPH
    Zublirina, Nina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 589 - 599
  • [39] Senile reinforced random walks
    Holmes, M.
    Sakai, A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (10) : 1519 - 1539
  • [40] Directionally reinforced random walks
    Mauldin, RD
    Monticino, M
    vonWeizsacker, H
    ADVANCES IN MATHEMATICS, 1996, 117 (02) : 239 - 252