Beating the Stock Market with a Deep Reinforcement Learning Day Trading System

被引:14
|
作者
Conegundes, Leonardo [1 ]
Machado Pereira, Adriano C. [2 ]
机构
[1] Univ Fed Minas Gerais DCC UFMG, Dept Comp Sci, Ctr Fed Educ Tecnol Minas Gerais CEFET MG, Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais DCC UFMG, Dept Comp Sci, Belo Horizonte, MG, Brazil
关键词
Deep Reinforcement Learning; Deep Deterministic Policy Gradient; Machine Learning; Neural Networks; Algorithmic Trading; Stock Trading; Asset Allocation Problem; Intraday Trading; Financial Markets; ALGORITHM;
D O I
10.1109/ijcnn48605.2020.9206938
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study we investigate the potential of using Deep Reinforcement Learning (DRL) to day trade stocks, taking into account the constraints imposed by the stock market, such as liquidity, latency, slippage and transaction costs. More specifically, we use a Deep Deterministic Policy Gradient (DDPG) algorithm to solve a series of asset allocation problems in order to define the percentage of capital that must be invested in each asset at each period, executing exclusively day trade operations. DDPG is a model-free, off-policy actor-critic method that can learn policies in high-dimensional and continuous action and state spaces, like the ones normally found in financial market environments. The proposed day trading system was tested in B3 - Brazil Stock Exchange, an important and understudied market, especially considering the application of DRL techniques to alpha generation. A series of experiments were performed from the beginning of 2017 until the end of 2019 and compared with ten benchmarks, including Ibovespa, the most important Brazilian market index, and the stock portfolios suggested by the main Brazilian banks and brokers during these years. The results were evaluated considering return and risk metrics and showed that the proposed method outperformed the benchmarks by a huge margin. The best results obtained by the algorithm had a cumulative percentage return of 311% in three years, with an annual average maximum drawdown around 19%.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Rules Based Policy for Stock Trading: A New Deep Reinforcement Learning Method
    Badr, Hirchoua
    Ouhbi, Brahim
    Frikh, Bouchra
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 61 - 66
  • [32] Turbulence-driven Autonomous Stock Trading using Deep Reinforcement Learning
    Jaggi, Ramneet
    Abbas, Muhammad Naveed
    Dwivedi, Rahul
    Manzoor, Jawad
    Asghar, Mamoona Naveed
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [33] A parallel multi-module deep reinforcement learning algorithm for stock trading
    Ma, Cong
    Zhang, Jiangshe
    Liu, Junmin
    Ji, Lizhen
    Gao, Fei
    NEUROCOMPUTING, 2021, 449 : 290 - 302
  • [34] A synchronous deep reinforcement learning model for automated multi-stock trading
    Rasha AbdelKawy
    Walid M. Abdelmoez
    Amin Shoukry
    Progress in Artificial Intelligence, 2021, 10 : 83 - 97
  • [35] A synchronous deep reinforcement learning model for automated multi-stock trading
    AbdelKawy, Rasha
    Abdelmoez, Walid M.
    Shoukry, Amin
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2021, 10 (01) : 83 - 97
  • [36] Offline Reinforcement Learning for Automated Stock Trading
    Lee, Namyeong
    Moon, Jun
    IEEE ACCESS, 2023, 11 : 112577 - 112589
  • [37] A Simple Reinforcement Learning Algorithm for Stock Trading
    Fiorini, Pierre M.
    Fiorini, Pierce-Gabriel
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 824 - 830
  • [38] A convolutional deep reinforcement learning architecture for an emerging stock market analysis
    Hadizadeh, Anita
    Tarokh, Mohammad Jafar
    Ghazani, Majid Mirzaee
    DECISION SCIENCE LETTERS, 2025, 14 (02) : 313 - 326
  • [39] Detecting Insider Trading in the Indian Stock Market: An Optimized Deep Learning Approach
    Priyadarshi, Prashant
    Kumar, Prabhat
    COMPUTATIONAL ECONOMICS, 2024,
  • [40] How profitable is day-trading?: A study on day-trading in Korean stock market
    Lee, Eunjung
    Park, Kyung Suh
    Jang, Hasung
    ASIA-PACIFIC JOURNAL OF FINANCIAL STUDIES, 2007, 36 (03) : 351 - 385