Unsupervised feature selection via multi-step markov probability relationship

被引:1
|
作者
Min, Yan [1 ]
Ye, Mao [1 ]
Tian, Liang [1 ]
Jian, Yulin [1 ]
Zhu, Ce [2 ]
Yang, Shangming [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Unsupervised feature selection; Data structure preserving; Multi-step Markov transition probability; Machine learning; DIMENSIONALITY REDUCTION; RECOGNITION;
D O I
10.1016/j.neucom.2021.04.073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is a widely used dimension reduction technique to select feature subsets because of its interpretability. Many methods have been proposed and achieved good results, in which the relationships between adjacent data points are mainly concerned. But the possible associations between data pairs that are not adjacent are always neglected. Different from previous methods, we propose a novel and very simple approach for unsupervised feature selection, named MMFS (Multi-step Markov Probability Relationship for Feature Selection). The idea is using multi-step Markov transition probability to describe the relation between any data pair. Two ways from the positive and negative viewpoints are employed respectively to keep the data structure after feature selection. From the positive viewpoint, the maximum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. Then, the features which can keep the compact data structure are selected. From the viewpoint of negative, the minimum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. On the contrary, the features that least maintain the loose data structure are selected. The two ways can also be combined. Thus three algorithms are proposed. Our main contributions are a novel feature section approach which uses multi-step transition probability to characterize the data structure, and three algorithms proposed from the positive and negative aspects for keeping data structure and select the features to preserve such structure. The performance of our approach is compared with the state-of-the-art methods on eight real-world data sets, and the experimental results show that the proposed MMFS is effective in unsupervised feature selection. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 50 条
  • [21] An effective multi-step feature selection framework for clinical outcome prediction using electronic medical records
    Wang, Hongnian
    Zhang, Mingyang
    Mai, Liyi
    Li, Xin
    Bellou, Abdelouahab
    Wu, Lijuan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [22] Multi-step Forecasting via Multi-task Learning
    Jawed, Shayan
    Rashed, Ahmed
    Schmidt-Thieme, Lars
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 790 - 799
  • [23] Unsupervised feature selection for visual classification via feature representation property
    He, Wei
    Zhu, Xiaofeng
    Cheng, Debo
    Hu, Rongyao
    Zhang, Shichao
    NEUROCOMPUTING, 2017, 236 : 5 - 13
  • [24] Unsupervised Feature Selection via Adaptive Multimeasure Fusion
    Zhang, Rui
    Nie, Feiping
    Wang, Yunhai
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2886 - 2892
  • [25] Unsupervised Feature Selection via Collaborative Embedding Learning
    Li, Junyu
    Qi, Fei
    Sun, Xin
    Zhang, Bin
    Xu, Xiangmin
    Cai, Hongmin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2529 - 2540
  • [26] Unsupervised Feature Selection via Feature-Grouping and Orthogonal Constraint
    Yuan, Aihong
    Huang, Jiahao
    Wei, Chen
    Zhang, Wenjie
    Zhang, Naidan
    You, Mengbo
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 720 - 726
  • [27] Online Unsupervised Multi-view Feature Selection
    Shao, Weixiang
    He, Lifang
    Lu, Chun-Ta
    Wei, Xiaokai
    Yu, Philip S.
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1203 - 1208
  • [28] Unsupervised feature selection via discrete spectral clustering and feature weights
    Shang, Ronghua
    Kong, Jiarui
    Wang, Lujuan
    Zhang, Weitong
    Wang, Chao
    Li, Yangyang
    Jiao, Licheng
    NEUROCOMPUTING, 2023, 517 : 106 - 117
  • [29] Subspace Clustering via Joint Unsupervised Feature Selection
    Dong, Wenhua
    Wu, Xiao-Jun
    Li, Hui
    Feng, Zhen-Hua
    Kittler, Josef
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3892 - 3898
  • [30] Robust unsupervised feature selection via matrix factorization
    Du, Shiqiang
    Ma, Yide
    Li, Shouliang
    Ma, Yurun
    NEUROCOMPUTING, 2017, 241 : 115 - 127