Evolution of a fractional-charge optical vortex upon free-space propagation

被引:0
|
作者
Kotlyar, V. V. [1 ,2 ]
Nalimov, A. G. [1 ,2 ]
机构
[1] FSRC Crystallog & Photon RAS, IPSI RAS Branch, Molodogvardeyskaya 151, Samara 443001, Russia
[2] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
来源
OPTIK | 2022年 / 261卷
基金
俄罗斯科学基金会;
关键词
Optical vortex; Fractional topological charge; Near field; Far field; ORBITAL ANGULAR-MOMENTUM; VORTICES; BIRTH;
D O I
10.1016/j.ijleo.2022.169158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Previously, it has been demonstrated theoretically (J. Opt. 6, 259 (2004)) and experimentally (Opt Express 19, 5760 (2011)) that upon the free-space propagation, an initial fractional-charge optical vortex acquires an integer topological charge (TC) equal to the nearest smaller integer if the fractional part is less than 0.5, otherwise becoming equal to the nearest larger integer. In this work, we demonstrate by the numerical modeling that as an initial fractional-charge optical vortex propagates in free space, the TC changes to the nearest smaller or larger integer at a fractional part threshold of 0.12. The fact is that an additional singularity center is born on the beam periphery where the field intensity is near-zero (one millionth part of the maximum), meaning that it cannot be experimentally detected but can be numerically simulated.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Statistical description of the free-space propagation of highly aberrated optical beams
    Mani, Ali
    Wang, Meng
    Moin, Parviz
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (12) : 3027 - 3035
  • [32] Generation of high-quality optical vortex beams in free-space propagation by microfabricated wedge with spatial filtering technique
    Yuan, X.-C.
    Ahluwalia, B. P. S.
    Chen, H. L.
    Bu, J.
    Lin, J.
    Burge, R. E.
    Peng, X.
    Niu, H. B.
    APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [33] Software for free-space beam propagation
    Bruegge, TJ
    Rimmer, MP
    Targove, JD
    OPTICAL DESIGN AND ANALYSIS SOFTWARE, 1999, 3780 : 14 - 22
  • [34] Free-space optical communications
    Chan, Vincent W. S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) : 4750 - 4762
  • [35] Free-space optical interconnects
    Kirk, AG
    OPTICAL INTERCONNECTS: THE SILICON APPROACH, 2006, : 343 - 377
  • [36] Free-space realization of tunable pin-like optical vortex beams
    Bongiovanni, Domenico
    Li, Denghui
    Goutsoulas, Mihalis
    Wu, Hao
    Hu, Yi
    Song, Daohong
    Morandotti, Roberto
    Efremidis, Nikolaos K.
    Chen, Zhigang
    PHOTONICS RESEARCH, 2021, 9 (07) : 1204 - 1212
  • [37] Free-space realization of tunable pin-like optical vortex beams
    DOMENICO BONGIOVANNI
    DENGHUI LI
    MIHALIS GOUTSOULAS
    HAO WU
    YI HU
    DAOHONG SONG
    ROBERTO MORANDOTTI
    NIKOLAOS K.EFREMIDIS
    ZHIGANG CHEN
    Photonics Research, 2021, 9 (07) : 1204 - 1212
  • [38] Generation and detection of multiple coaxial vortex beams for free-space optical communications
    Anguita, Jaime A.
    Herreros, Joaquin
    Cisternas, Jaime E.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [39] Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication
    Yan, Xu
    Guo, Lixin
    Cheng, Mingjian
    Li, Jiangting
    OPTICS EXPRESS, 2018, 26 (10): : 12605 - 12619
  • [40] Simulating atmospheric free-space optical propagation: Part I, rainfall attenuation
    Achour, M
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIV, 2002, 4635 : 192 - 201