High thermoelectric performance of fullerene doped Bi0.5Sb1.5Te3 alloys

被引:12
|
作者
Wang, Zhou [1 ,2 ]
Vemishetti, Aravindkumar [1 ,2 ]
Ejembi, John Idoko [1 ,2 ]
Wei, Guodong [1 ,2 ]
Zhang, Boliang [3 ]
Wang, Li [3 ]
Zhang, Yi [3 ]
Guo, Shengmin [3 ]
Luo, Jia [4 ]
Chepko, Corin [5 ]
Dai, Qilin [5 ]
Tang, JinKe [5 ]
Zhao, Guang-Lin [1 ,2 ]
机构
[1] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA
[2] A&M Coll, Baton Rouge, LA 70813 USA
[3] Louisiana State Univ, Mech & Ind Engn Dept, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA
[5] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2016年 / 205卷
基金
美国国家科学基金会;
关键词
Thermoelectrics; Bi0.5Sb1.5Te3; alloy; Fullerene; SILICON-GERMANIUM ALLOYS; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; PHONON-SCATTERING; HIGH-TEMPERATURE; (BI; SB)(2)TE-3; FIGURE; MERIT;
D O I
10.1016/j.mseb.2015.12.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we report our recent experimental findings on the enhancement of thermoelectric performance of C-60 doped Bi0.5Sb1.5Te3 bulk alloys. Incorporation of a small amount of C-60 significantly reduces the crystalline particle size and leads to closely packed nanostructure, whilst slightly improve the electric conductivity in the measured temperature range. In addition, a minimum thermal conductivity of 0.4 W/(mK) at 358 K was observed, which is identified to be caused by the strong lattice phonon scattering at grain boundaries, yielding a high figure-of-merit ZT= 1.47 +/- 0.07 at 358 K. Our results demonstrate that the materials can be used for the development of advanced thermoelectrics. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 39
页数:4
相关论文
共 50 条
  • [31] Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites
    Blank, V. D.
    Buga, S. G.
    Kulbachinskii, V. A.
    Kytin, V. G.
    Medvedev, V. V.
    Popov, M. Yu.
    Stepanov, P. B.
    Skok, V. F.
    PHYSICAL REVIEW B, 2012, 86 (07):
  • [32] Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films
    Han, Xiaobin
    Zhang, Zhenyu
    Liu, Zhengmao
    Xu, Chao
    Lu, Xiaowei
    Sun, Lin
    Jiang, Peng
    APPLIED NANOSCIENCE, 2020, 10 (07) : 2375 - 2381
  • [33] Response of thermoelectric parameters of Bi0.5Sb1.5Te3 films to secondary recrystallization
    Yu. A. Boykov
    V. A. Danilov
    Semiconductors, 2017, 51 : 976 - 978
  • [34] High-Performance Ag-Modified Bi0.5Sb1.5Te3 Films for the Flexible Thermoelectric Generator
    Shang, Hongjing
    Li, Taiguang
    Luo, Dan
    Yu, Luo
    Zou, Qi
    Huang, Daxing
    Xiao, Liye
    Gu, Hongwei
    Ren, Zhifeng
    Ding, Fazhu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7358 - 7365
  • [35] Diffusion Soldering of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrode
    C. L. Yang
    H. J. Lai
    J. D. Hwang
    T. H. Chuang
    Journal of Materials Engineering and Performance, 2013, 22 : 2029 - 2037
  • [36] Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films
    Xiaobin Han
    Zhenyu Zhang
    Zhengmao Liu
    Chao Xu
    Xiaowei Lu
    Lin Sun
    Peng Jiang
    Applied Nanoscience, 2020, 10 : 2375 - 2381
  • [37] Response of thermoelectric parameters of Bi0.5Sb1.5Te3 films to secondary recrystallization
    Boykov, Yu. A.
    Danilov, V. A.
    SEMICONDUCTORS, 2017, 51 (08) : 976 - 978
  • [38] Effects of crystal-alignment and grain shape on the thermoelectric properties of Bi0.5Sb1.5Te3 alloys
    Je, Koo-Chul
    Ko, Beyungduk
    Kim, Cham
    Kim, Hoyoung
    Kim, Dong-Hwan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 517 : 75 - 79
  • [39] Thermoelectric Properties of Bi0.5Sb1.5Te3 Prepared by the Ultrarapid Quenching Process
    Wei, Shaohong
    Chen, Hui
    Wang, Zhong
    Chu, Ying
    Zhu, Lei
    Jian, Xuyu
    Yu, Haijun
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 394 - 398
  • [40] Thermoelectric properties of Bi0.5Sb1.5Te3 ribbons prepared by melt spinning
    Burkov, A. T.
    Novikov, S. V.
    Tang, X.
    Yan, Y.
    SEMICONDUCTORS, 2017, 51 (08) : 1024 - 1026