An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery

被引:27
|
作者
Tang, Zhi [1 ]
Bo, Lin [1 ]
Liu, Xiaofeng [1 ]
Wei, Daiping [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
rotating machinery; intelligent fault diagnosis; autoencoder; transfer learning; adaptive optimization; CONVOLUTIONAL NEURAL-NETWORK; MODEL; DECOMPOSITION; ALGORITHM; KERNEL;
D O I
10.1088/1361-6501/abd650
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Under variable working conditions, a problem arises, which is that it is difficult to obtain enough labeled data; to address this problem, an adaptive transfer autoencoder (ATAE) is established to diagnose faults in rotating machinery. First, a data adaptation module, which calculates the maximum mean discrepancy for the network hidden-layer data in reproducing kernel Hilbert space, is introduced to the autoencoder network, thus making the classification model operate under variable working conditions. Variation particle-swarm optimization is then invoked to optimize the data adaptation parameters. Finally, the k-nearest neighbors algorithm, as the classification layer of the network, identifies the state of health of the rotating machinery. The capabilities of the intelligent fault-diagnosis network are verified using vibration signals from a bearing test rig and a gearbox test rig. The experimental results suggest that, compared with state-of-the-art diagnosis methods, the proposed ATAE network can significantly boost diagnostic performance in the absence of target vibration signal labels.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Liu, Jie
    Zhou, Kaibo
    Yang, Chaoying
    Lu, Guoliang
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (04) : 829 - 839
  • [22] A multi-representation transfer adversarial network for intelligent fault diagnosis of rotating machinery
    Zhang, Hongfei
    She, Daoming
    Wang, Hu
    Li, Yaoming
    Chen, Jin
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (11) : 2211 - 2221
  • [23] Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
    Chen, Zhouliang
    Li, Zhinong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3443 - 3449
  • [24] Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 9335 - 9346
  • [25] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [26] Unsupervised feature learning with reconstruction sparse filtering for intelligent fault diagnosis of rotating machinery
    Zhang, Zhiqiang
    Yang, Qingyu
    APPLIED SOFT COMPUTING, 2022, 115
  • [27] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [28] Unsupervised feature learning with reconstruction sparse filtering for intelligent fault diagnosis of rotating machinery
    Zhang, Zhiqiang
    Yang, Qingyu
    Applied Soft Computing, 2022, 115
  • [29] Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhang L.
    Hu Y.
    Zhao L.
    Zhang H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (08): : 966 - 975
  • [30] A DIMENSIONLESS IMMUNE INTELLIGENT FAULT DIAGNOSIS SYSTEM FOR ROTATING MACHINERY
    Shao, Longqiu
    Zhang, Qinghua
    Lei, Gaowei
    Su, Naiquan
    Yuan, Penghui
    TRANSACTIONS OF FAMENA, 2022, 46 (02) : 23 - 36