Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in Saccharomyces cerevisiae

被引:25
|
作者
Paul, Matthew Robert [1 ,2 ]
Markowitz, Tovah Elise [1 ]
Hochwagen, Andreas [1 ]
Ercan, Sevinc [1 ,2 ]
机构
[1] NYU, Dept Biol, 1009 Silver Ctr,100 Washington Sq East, New York, NY 10003 USA
[2] NYU, Ctr Genom & Syst Biol, 550 1St Ave, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
genome organization; budding yeast; condensin; chromosome interactions; gene expression; TADs; CHROMOSOME CONDENSATION; CHROMATIN ORGANIZATION; MITOTIC CHROMOSOMES; ENHANCER-ADOPTION; PRINCIPLES; DNA; RESOLUTION; DYNAMICS; DOMAINS; COMPLEX;
D O I
10.1534/genetics.118.301217
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Condensins are broadly conserved chromosome organizers that function in chromatin compaction and transcriptional regulation, but to what extent these two functions are linked has remained unclear. Here, we analyzed the effect of condensin inactivation on genome compaction and global gene expression in the yeast Saccharomyces cerevisiae by performing spike-in-controlled genome-wide chromosome conformation capture (3C-seq) and mRNA-sequencing analysis. 3C-seq analysis shows that acute condensin inactivation leads to a global decrease in close-range intrachromosomal interactions as well as more specific losses of interchromosomal tRNA gene clustering. In addition, a condensin-rich interaction domain between the ribosomal DNA and the centromere on chromosome XII is lost upon condensin inactivation. Unexpectedly, these large-scale changes in chromosome architecture are not associated with global changes in mRNA levels. Our data suggest that the global transcriptional program of proliferating S. cerevisiae is resistant to condensin inactivation and the associated profound changes in genome organization.
引用
收藏
页码:331 / 344
页数:14
相关论文
共 50 条
  • [31] Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae
    Nakasono, S
    Laramee, C
    Saiki, H
    McLeod, KJ
    RADIATION RESEARCH, 2003, 160 (01) : 25 - 37
  • [32] Positional preferences of polypurine/polypyrimidine tracts in Saccharomyces cerevisiae genome: Implications for cis regulation of gene expression
    Raghavan, S
    Burma, PK
    Brahmachari, SK
    JOURNAL OF MOLECULAR EVOLUTION, 1997, 45 (05) : 485 - 498
  • [33] Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae
    de Morgan, A.
    Brodsky, L.
    Ronin, Y.
    Nevo, E.
    Korol, A.
    Kashi, Y.
    MICROBIOLOGY-SGM, 2010, 156 : 1758 - 1771
  • [34] Expression of human RECQL5 in Saccharomyces cerevisiae causes transcription defects and transcription-associated genome instability
    Lafuente-Barquero, Juan
    Svejstrup, Jesper Q.
    Luna, Rosa
    Aguilera, Andres
    MOLECULAR GENETICS AND GENOMICS, 2024, 299 (01)
  • [35] Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution
    Tijsterman, M
    TasserondeJong, JG
    vandePutte, P
    Brouwer, J
    NUCLEIC ACIDS RESEARCH, 1996, 24 (18) : 3499 - 3506
  • [36] INFLUENCE OF OXYGEN RADICALS ON THE CELL VIABILITY OF SACCHAROMYCES CEREVISIAE WITH DIFFERENT LEVEL OF THE METALLOTHIONEIN GENE-EXPRESSION
    SHARONOV, BP
    KISELEV, OI
    KONDRATIEVA, LD
    PASECHNIK, VA
    DOKLADY AKADEMII NAUK SSSR, 1989, 307 (06): : 1490 - 1493
  • [37] Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae (vol 7, pg 291, 2003)
    Iwahashi, H
    Shimizu, H
    Odani, M
    Komatsu, Y
    EXTREMOPHILES, 2003, 7 (05) : 433 - 433
  • [38] Genome-wide Analysis of the Effects of Location and Number of Stress Response Elements on Gene Expression in Saccharomyces cerevisiae
    Yoshikawa, Katsunori
    Furusawa, Chikara
    Hirasawa, Takashi
    Shimizu, Hiroshi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2008, 106 (05) : 507 - 510
  • [39] Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    Sonderegger, M
    Jeppsson, M
    Hahn-Hägerdal, B
    Sauer, U
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (04) : 2307 - 2317
  • [40] Global gene expression in recombinant and non-recombinant yeast Saccharomyces cerevisiae in three different metabolic states
    Diaz, H.
    Andrews, B. A.
    Hayes, A.
    Castrillo, J.
    Oliver, S. G.
    Asenjo, J. A.
    BIOTECHNOLOGY ADVANCES, 2009, 27 (06) : 1092 - 1117