Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in Saccharomyces cerevisiae

被引:25
|
作者
Paul, Matthew Robert [1 ,2 ]
Markowitz, Tovah Elise [1 ]
Hochwagen, Andreas [1 ]
Ercan, Sevinc [1 ,2 ]
机构
[1] NYU, Dept Biol, 1009 Silver Ctr,100 Washington Sq East, New York, NY 10003 USA
[2] NYU, Ctr Genom & Syst Biol, 550 1St Ave, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
genome organization; budding yeast; condensin; chromosome interactions; gene expression; TADs; CHROMOSOME CONDENSATION; CHROMATIN ORGANIZATION; MITOTIC CHROMOSOMES; ENHANCER-ADOPTION; PRINCIPLES; DNA; RESOLUTION; DYNAMICS; DOMAINS; COMPLEX;
D O I
10.1534/genetics.118.301217
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Condensins are broadly conserved chromosome organizers that function in chromatin compaction and transcriptional regulation, but to what extent these two functions are linked has remained unclear. Here, we analyzed the effect of condensin inactivation on genome compaction and global gene expression in the yeast Saccharomyces cerevisiae by performing spike-in-controlled genome-wide chromosome conformation capture (3C-seq) and mRNA-sequencing analysis. 3C-seq analysis shows that acute condensin inactivation leads to a global decrease in close-range intrachromosomal interactions as well as more specific losses of interchromosomal tRNA gene clustering. In addition, a condensin-rich interaction domain between the ribosomal DNA and the centromere on chromosome XII is lost upon condensin inactivation. Unexpectedly, these large-scale changes in chromosome architecture are not associated with global changes in mRNA levels. Our data suggest that the global transcriptional program of proliferating S. cerevisiae is resistant to condensin inactivation and the associated profound changes in genome organization.
引用
收藏
页码:331 / 344
页数:14
相关论文
共 50 条
  • [1] Fitness effects of altering gene expression noise in Saccharomyces cerevisiae
    Duveau, Fabien
    Hodgins-Davis, Andrea
    Metzger, Brian P. H.
    Yang, Bing
    Tryban, Stephen
    Walker, Elizabeth A.
    Lybrook, Tricia
    Wittkopp, Patricia J.
    ELIFE, 2018, 7
  • [2] Effects of iodine on global gene expression in Saccharomyces cerevisiae
    Kitagawa, E
    Akama, K
    Iwahashi, H
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2005, 69 (12) : 2285 - 2293
  • [3] Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine
    Guo, Na
    Yu, Lu
    Meng, Rizeng
    Fan, Junwen
    Wang, Dacheng
    Sun, Guang
    Deng, Xuming
    YEAST, 2008, 25 (09) : 631 - 641
  • [4] Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae
    Hitoshi Iwahashi
    Hisayo Shimizu
    Mine Odani
    Yasuhiko Komatsu
    Extremophiles, 2003, 7 : 291 - 298
  • [5] Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae
    Hitoshi Iwahashi
    Hisayo Shimizu
    Mine Odani
    Yasuhiko Komatsu
    Extremophiles, 2003, 7 : 433 - 433
  • [6] Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae
    Iwahashi, H
    Shimizu, H
    Odani, M
    Komatsu, Y
    EXTREMOPHILES, 2003, 7 (04) : 291 - 298
  • [7] Global analysis of the regulatory network structure of gene expression in Saccharomyces cerevisiae
    Gunji, L
    Kai, T
    Takahashi, Y
    Maki, Y
    Kurihara, W
    Utsugi, T
    Fujimori, F
    Murakami, Y
    DNA RESEARCH, 2004, 11 (03) : 163 - 177
  • [8] Allicin-induced global gene expression profile of Saccharomyces cerevisiae
    Yu, Lu
    Guo, Na
    Meng, Rizeng
    Liu, Bin
    Tang, Xudong
    Jin, Jing
    Cui, Yumei
    Deng, Xuming
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 88 (01) : 219 - 229
  • [9] Allicin-induced global gene expression profile of Saccharomyces cerevisiae
    Lu Yu
    Na Guo
    Rizeng Meng
    Bin Liu
    Xudong Tang
    Jing Jin
    Yumei Cui
    Xuming Deng
    Applied Microbiology and Biotechnology, 2010, 88 : 219 - 229
  • [10] An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
    Bingyin Peng
    Lygie Esquirol
    Zeyu Lu
    Qianyi Shen
    Li Chen Cheah
    Christopher B. Howard
    Colin Scott
    Matt Trau
    Geoff Dumsday
    Claudia E. Vickers
    Nature Communications, 13