Zeolite structure determination using genetic algorithms and geometry optimisation

被引:4
|
作者
Liu, Xuehua [1 ]
Valero, Soledad [1 ]
Argente, Estefania [1 ]
Sastre, German [2 ]
机构
[1] Univ Politecn Valencia, Dept Sistemas Informat & Comp, Calle Camino Vera S-N, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, CSIC, Inst Tecnol Quim, Ave Naranjos S-N, E-46022 Valencia, Spain
关键词
CRYSTAL-STRUCTURE SOLUTION; FRAMEWORK DENSITY; COMPUTER-PROGRAM; ENUMERATION; PREDICTION; SIMULATION; UNITS;
D O I
10.1039/c8fd00035b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The recently presented software zeoGAsolver is discussed, which is based on genetic algorithms, with domain-dependent crossover and selection operators that maintain the size of the population in successive iterations while improving the average fitness. Using the density, cell parameters, and symmetry (or candidate symmetries) of a zeolite sample whose resolution can not be achieved by analysis of the XRD (X-ray diffraction) data, the software attempts to locate the coordinates of the T-atoms of the zeolite unit cell employing a function of fitness' (F), which is defined through the different contributions to the penalties' (P) as F = 1/(1 + P). While testing the software to find known zeolites such as LTA (zeolite A), AEI (SSZ-39), ITW (ITQ-12) and others, the algorithm has found not only most of the target zeolites but also seven new hypothetical zeolites whose feasibility is confirmed by energetic and structural criteria.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [41] Optimising cancer chemotherapy using particle swarm optimisation and genetic algorithms
    Petrovski, A
    Sudha, L
    McCall, J
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 633 - 641
  • [42] The optimisation of the grinding of silicon carbide with diamond wheels using genetic algorithms
    Anne Venu Gopal
    P. Venkateswara Rao
    The International Journal of Advanced Manufacturing Technology, 2003, 22 : 475 - 480
  • [43] Optimisation of Hadoop MapReduce Configuration Parameter Settings Using Genetic Algorithms
    Khaleel, Ali
    Al-Raweshidy, H. S.
    INTELLIGENT COMPUTING, VOL 2, 2019, 857 : 40 - 52
  • [44] Multiobjective optimisation of fluid catalytic cracker unit using genetic algorithms
    Dave, D
    Nan, Z
    EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 13, 2003, 14 : 623 - 628
  • [45] Optimisation of shape and process parameters in metal forging using genetic algorithms
    Castro, CF
    António, CAC
    Sousa, LC
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 146 (03) : 356 - 364
  • [46] AquatorGA: Integrated optimisation for reservoir operation using multiobjective genetic algorithms
    Vamvakeridou-Lyroudia, L. S.
    Morley, M. S.
    Bicik, J.
    Green, C.
    Smith, M.
    Savic, D. A.
    INTEGRATING WATER SYSTEMS, 2010, : 493 - +
  • [47] Exergy analysis and optimisation of a wind turbine using genetic and searching algorithms
    Asgari, E.
    Ehyaei, M. A.
    INTERNATIONAL JOURNAL OF EXERGY, 2015, 16 (03) : 293 - 314
  • [48] Automatic definition of the cutting tool geometry using genetic algorithms
    Durán, O.
    Rodríguez, N.
    Consalter, L.A.
    Informacion Tecnologica, 2008, 19 (02): : 51 - 58
  • [49] Two-dimensional road shape optimisation using genetic algorithms
    Liatsis, P
    Tawfik, HM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 51 (1-2) : 19 - 31
  • [50] Base Stations Locations Optimisation in an Airport Environment using Genetic Algorithms
    Ahmed, Imad E.
    Qazi, Bilal R.
    Elmirghani, Jaafar M. H.
    2012 8TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2012, : 24 - 29