Zeolite structure determination using genetic algorithms and geometry optimisation

被引:4
|
作者
Liu, Xuehua [1 ]
Valero, Soledad [1 ]
Argente, Estefania [1 ]
Sastre, German [2 ]
机构
[1] Univ Politecn Valencia, Dept Sistemas Informat & Comp, Calle Camino Vera S-N, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, CSIC, Inst Tecnol Quim, Ave Naranjos S-N, E-46022 Valencia, Spain
关键词
CRYSTAL-STRUCTURE SOLUTION; FRAMEWORK DENSITY; COMPUTER-PROGRAM; ENUMERATION; PREDICTION; SIMULATION; UNITS;
D O I
10.1039/c8fd00035b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The recently presented software zeoGAsolver is discussed, which is based on genetic algorithms, with domain-dependent crossover and selection operators that maintain the size of the population in successive iterations while improving the average fitness. Using the density, cell parameters, and symmetry (or candidate symmetries) of a zeolite sample whose resolution can not be achieved by analysis of the XRD (X-ray diffraction) data, the software attempts to locate the coordinates of the T-atoms of the zeolite unit cell employing a function of fitness' (F), which is defined through the different contributions to the penalties' (P) as F = 1/(1 + P). While testing the software to find known zeolites such as LTA (zeolite A), AEI (SSZ-39), ITW (ITQ-12) and others, the algorithm has found not only most of the target zeolites but also seven new hypothetical zeolites whose feasibility is confirmed by energetic and structural criteria.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [1] COMPRESSOR VARIABLE GEOMETRY SCHEDULE OPTIMISATION USING GENETIC ALGORITHMS
    Gallar, L.
    Arias, M.
    Pachidis, V.
    Pilidis, P.
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 425 - 434
  • [2] Geometry and sizing optimisation of discrete structure using the genetic programming method
    Zheng, Q. Z.
    Querin, O. M.
    Barton, D. C.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 31 (06) : 452 - 461
  • [3] Geometry and sizing optimisation of discrete structure using the genetic programming method
    Q. Z. Zheng
    O. M. Querin
    D. C. Barton
    Structural and Multidisciplinary Optimization, 2006, 31 : 452 - 461
  • [4] An improved structure of genetic algorithms for global optimisation
    Dao S.D.
    Abhary K.
    Marian R.
    Progress in Artificial Intelligence, 2016, 5 (3) : 155 - 163
  • [5] Optimisation Geometry and Its Implications for Optimisation Algorithms
    Pauley, Michael
    Manton, Jonathan H.
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [6] Sequential process optimisation using Genetic Algorithms
    Oduguwa, V
    Tiwari, A
    Roy, R
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 782 - 791
  • [7] Packet transmission optimisation using Genetic Algorithms
    Withall, M
    Hinde, C
    Stone, R
    Cooper, J
    DEVELOPMENTS IN APPLIED ARTIFICIAL INTELLIGENCE, 2003, 2718 : 653 - 661
  • [8] Global optimization in LEED structure determination using genetic algorithms
    Doll, R
    VanHove, MA
    SURFACE SCIENCE, 1996, 355 (1-3) : L393 - L398
  • [9] Optimisation of carbon cluster geometry using a genetic algorithm
    Hobday, S
    Smith, R
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (22): : 3919 - 3926
  • [10] Geometry optimisation of aluminium clusters using a genetic algorithm
    Lloyd, LD
    Johnston, RL
    Roberts, C
    Mortimer-Jones, TV
    CHEMPHYSCHEM, 2002, 3 (05) : 408 - +