Geometric approach to the MacWilliams Extension Theorem for codes over module alphabets

被引:3
|
作者
Dyshko, Serhii [1 ]
机构
[1] Univ Toulon & Var, IMATH, BP 20132, F-83957 La Garde, France
关键词
MacWilliams Extension Theorem; Hamming isometry; Module alphabet; MDS code; Group code; Matrix module; FINITE RINGS; LINEAR CODES; EQUIVALENCE;
D O I
10.1007/s00200-017-0324-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The minimal code length for which there exists an unextendable Hamming isometry of a linear code defined over a matrix module alphabet is found. An extension theorem for MDS codes over module alphabets is proved. An extension theorem for the case of MDS group codes is observed.
引用
收藏
页码:295 / 309
页数:15
相关论文
共 50 条
  • [41] An extension theorem for arcs and linear codes
    I. Landjev
    A. Rousseva
    Problems of Information Transmission, 2006, 42 : 319 - 329
  • [42] A generalized extension theorem for linear codes
    Tatsuya Maruta
    Yuri Yoshida
    Designs, Codes and Cryptography, 2012, 62 : 121 - 130
  • [43] An Extension Theorem for Arcs and Linear Codes
    Landjev, I.
    Rousseva, A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (04) : 319 - 329
  • [44] Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes
    Hai Q. Dinh
    Sachin Pathak
    Tushar Bag
    Ashish Kumar Upadhyay
    Woraphon Yamaka
    Quantum Information Processing, 2021, 20
  • [45] Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes
    Dinh, Hai Q.
    Pathak, Sachin
    Bag, Tushar
    Upadhyay, Ashish Kumar
    Yamaka, Woraphon
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)
  • [46] MacWilliams Identities of the Linear Codes Over Fqx(Fq+vFq)
    Tekkoyun, Mevlut
    Yaraneri, Ergun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (06)
  • [47] MacWilliams duality for rank metric codes over finite chain rings
    Blanco-Chacon, Ivan
    Boix, Alberto F.
    Greferath, Marcus
    Hieta-Aho, Erik
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 103
  • [48] Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations
    Garcia, Pedro-Jose Cazorla
    MATHEMATICS, 2024, 12 (11)
  • [49] Linear codes over F4R and their MacWilliams identity
    Benbelkacem, Nasreddine
    Ezerman, Martianus Frederic
    Abualrub, Taher
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (06)
  • [50] ACD codes over Z2R. and the MacWilliams identities
    Sagar, Vidya
    Sarma, Ritumoni
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 1221 - 1238