Nondifferentiable fractional semi-infinite multiobjective optimization problems

被引:29
|
作者
Thai Doan Chuong [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Fractional semi-infinite multiobjective programming; Optimality condition; Duality; Limiting subdifferential; Generalized convex function; DUALITY; OPTIMALITY;
D O I
10.1016/j.orl.2016.02.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Employing some advanced tools of variational analysis and generalized differentiation, we establish necessary conditions for local (weakly) efficient solutions of a nonsmooth fractional multiobjective optimization problem with an infinite number of inequality constraints. Sufficient conditions for such solutions to the considered problem are also obtained by means of proposing the use of (strictly) generalized convex functions. In addition, we state a dual problem to the primal one and explore duality relations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:260 / 266
页数:7
相关论文
共 50 条
  • [31] NONSMOOTH MULTIOBJECTIVE SEMI-INFINITE PROBLEMS WITH MIXED CONSTRAINTS
    Kanz, Nader
    Nobakhtian, Soghra
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (01): : 43 - 53
  • [32] Semi-infinite optimization problems and their approximations
    Ratiu, Augusta
    Duca, Dorel I.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03): : 401 - 411
  • [33] The generalized semi-infinite optimization problems
    Ruckmann, JJ
    KOI'96 - 6TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 1996, : 23 - 23
  • [34] Necessary Conditions in Generalized Semi-Infinite Optimization with Nondifferentiable Convex Data
    Soroush, H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (10)
  • [35] Constraint qualifications and optimality conditions for robust nonsmooth semi-infinite multiobjective optimization problems
    Nguyen Minh Tung
    Mai Van Duy
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (01): : 151 - 176
  • [36] Constraint qualifications and optimality conditions for robust nonsmooth semi-infinite multiobjective optimization problems
    Nguyen Minh Tung
    Mai Van Duy
    4OR, 2023, 21 : 151 - 176
  • [37] Weak-subdifferentials for vector functions and applications to multiobjective semi-infinite optimization problems
    Son, T. Q.
    Wen, C. F.
    APPLICABLE ANALYSIS, 2020, 99 (05) : 840 - 855
  • [38] ON DUALITY THEORY FOR MULTIOBJECTIVE SEMI-INFINITE FRACTIONAL OPTIMIZATION MODEL USING HIGHER ORDER CONVEXITY
    Yadav, Tamanna
    Gupta, S. K.
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (03) : 1343 - 1370
  • [39] Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data
    Sun, Xiangkai
    Feng, Xinyi
    Teo, Kok Lay
    OPTIMIZATION LETTERS, 2022, 16 (05) : 1457 - 1476
  • [40] Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data
    Xiangkai Sun
    Xinyi Feng
    Kok Lay Teo
    Optimization Letters, 2022, 16 : 1457 - 1476