Improving the performance of a non-aqueous lithium-air battery by defective titanium dioxides with oxygen vacancies

被引:34
|
作者
Wang, Fang [1 ]
Li, Haojun [1 ]
Wu, Qixing [1 ]
Fang, Jie [1 ]
Huang, Yang [1 ]
Yin, Chunli [1 ]
Xu, Yanghai [1 ]
Luo, Zhongkuan [1 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen Key Lab New Lithium Ion Batteries & Meso, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
catalyst; titanium dioxide; oxygen vacancy; lithium-air battery; non-aqueous; LI-O-2; BATTERIES; NANOTUBE ARRAYS; TIO2; NANOFIBERS; LI-ION; CARBON; CATHODE; CATALYST; SURFACE; OXIDE; STABILITY;
D O I
10.1016/j.electacta.2016.04.007
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we proposed using titanium dioxides (TiO2) with oxygen vacancies (H-TiO2) as cathode catalysts to improve the electrochemical performance of non-aqueous lithium-air batteries. Such H-TiO2 catalysts were attained by a facile heat treatment of rutile TiO2 and the existence of vacancies was confirmed by Raman spectra and X-ray photoelectron spectroscopy (XPS). It was demonstrated that due to the presence of defects which can facilitate the adsorption and dissociation of oxygen, the in-house lithium-air battery with H-TiO2 can be discharged at the current densities of 0.3 and 0.5 mA cm(-2) while maintaining the specific capacities of 3.2 and 2.8 mAh cm(-2), respectively, much higher than those of the batteries without catalysts or with pristine rutile TiO2. In addition, the cycling test showed that the battery with H-TiO2 can undergo 400 and 372 cycles, respectively, at the current densities of 0.3 and 0.5 mA cm(-2) with a fixed specific capacity of 0.1 mAh cm(-2) and a cutoff discharge voltage of 2.0 V. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] High Performance Air Breathing Flexible Lithium-Air Battery
    Jaradat, Ahmad
    Zhang, Chengji
    Singh, Sachin Kumar
    Ahmed, Junaid
    Ahmadiparidari, Alireza
    Majidi, Leily
    Rastegar, Sina
    Hemmat, Zahra
    Wang, Shuxi
    Ngo, Anh T.
    Curtiss, Larry A.
    Daly, Matthew
    Subramanian, Arunkumar
    Salehi-khojin, Amin
    SMALL, 2021, 17 (42)
  • [22] Electrochemical performance of a nonaqueous rechargeable lithium-air battery
    Fang Wang
    Chun-Sheng Liang
    Yan Pang
    Yang-Hai Xu
    Zhong-Kuan Luo
    Ionics, 2013, 19 : 1791 - 1793
  • [23] An improved high-performance lithium-air battery
    Jung, Hun-Gi
    Hassoun, Jusef
    Park, Jin-Bum
    Sun, Yang-Kook
    Scrosati, Bruno
    NATURE CHEMISTRY, 2012, 4 (07) : 579 - 585
  • [24] Effect of Carbon on the Performance of lithium-Air Secondary Battery
    Choi, Hyun-A
    Ko, Bo Kyung
    Shim, Sang Eun
    Baeck, Sung-Hyeon
    KOREAN JOURNAL OF METALS AND MATERIALS, 2014, 52 (04): : 277 - 282
  • [25] Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory
    Lu, Jun
    Amine, Khalil
    ENERGIES, 2013, 6 (11): : 6016 - 6044
  • [26] Cycling Non-Aqueous Lithium-Air Batteries with Dimethyl Sulfoxide and Sulfolane Co-Solvent
    Kim, Gunwoo
    Liu, Tao
    Temprano, Israel
    Petrucco, Enrico A.
    Barrow, Nathan
    Grey, Clare P.
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2018, 62 (03): : 332 - 340
  • [27] Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications
    Laoire, Cormac O.
    Mukerjee, Sanjeev
    Abraham, K. M.
    Plichta, Edward J.
    Hendrickson, Mary A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46): : 20127 - 20134
  • [28] Electrochemical performance of a nonaqueous rechargeable lithium-air battery
    Wang, Fang
    Liang, Chun-Sheng
    Pang, Yan
    Xu, Yang-Hai
    Luo, Zhong-Kuan
    IONICS, 2013, 19 (12) : 1791 - 1793
  • [29] Behaviour of gas-diffusion electrode in various non-aqueous electrolytes for the lithium-air system
    Popov, I.
    Velev, B.
    Milusheva, J.
    Boukoureshtlieva, R.
    Hristov, S.
    Stankulov, T.
    Banov, B.
    Trifonova, A.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2013, 45 : 110 - 115
  • [30] What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium-air batteries?
    Tan, Peng
    Shyy, Wei
    Zhao, Tianshou
    SCIENCE BULLETIN, 2015, 60 (10) : 975 - 976