Electrical switching of high-performance bioinspired nanocellulose nanocomposites

被引:34
|
作者
Jiao, Dejin [1 ,2 ,3 ]
Lossada, Francisco [1 ,2 ,3 ]
Guo, Jiaqi [1 ,2 ,3 ]
Skarsetz, Oliver [1 ,2 ,3 ]
Hoenders, Daniel [1 ,2 ,3 ,4 ]
Liu, Jin [1 ,2 ,3 ]
Walther, Andreas [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Freiburg, Inst Macromol Chem, Freiburg, Germany
[2] Univ Freiburg, Freiburg Mat Res Ctr, Freiburg, Germany
[3] Univ Freiburg, Freiburg Ctr Interact Mat & Bioinspired Technol, Georges Kohler Allee 105, Freiburg, Germany
[4] Johannes Gutenberg Univ Mainz, Dept Chem, A3BMS Lab, Mainz, Germany
[5] Univ Freiburg, Cluster Excellence LivMatS FIT, Freiburg Ctr Interact Mat & Bioinspired Technol, Georges Kohler Allee 105, Freiburg, Germany
关键词
D O I
10.1038/s41467-021-21599-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics. Switching mechanical properties in stiff bioinspired nanocomposites is challenging as they contain high fractions of hard reinforcements. Here, the authors demonstrate reversible electrical switching in highly-reinforced cellulose nanopapers using an applied low direct current.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] QUEUING IN HIGH-PERFORMANCE PACKET SWITCHING
    HLUCHYJ, MG
    KAROL, MJ
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1988, 6 (09) : 1587 - 1597
  • [22] One-Pot Synthesis of UPy-Functionalized Nanocellulose under Mechanochemical Synergy for High-Performance Epoxy Nanocomposites
    Wang, Hanchen
    Wu, Jiayin
    Huang, Biao
    Lu, Qi-Lin
    POLYMERS, 2022, 14 (12)
  • [23] High-Performance and Moisture-Stable Cellulose-Starch Nanocomposites Based on Bioinspired Core-Shell Nanofibers
    Prakobna, Kasinee
    Galland, Sylvain
    Berglund, Lars A.
    BIOMACROMOLECULES, 2015, 16 (03) : 904 - 912
  • [24] Development of commercially viable and high-performance upcycled plastic waste nanocomposites for automotive and electrical industry
    Gill, Yasir Qayyum
    Jabeen, Faiqua
    Saeed, Farhan
    Wasif, Muhammad
    Javed, Zarq-Ullah
    Mehmood, Umer
    POLYMER BULLETIN, 2024, 81 (12) : 11173 - 11197
  • [25] Morphology and electrical conductivity of carbon-coated Nickel reinforced high-performance polymer nanocomposites
    Gadve, R. D.
    Goyal, R. K.
    NANOTECHNOLOGY, 2024, 35 (33)
  • [27] Bioinspired processing for the sustainable fabrication of high-performance bioinspired ceramic-reinforced polymer composites
    Sapasakulvanit, Slocha
    Teoh, Jia Heng
    Le Ferrand, Hortense
    MATTER, 2024, 7 (11) : 3786 - 3810
  • [28] Electrical high-performance test facility
    不详
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1933, 77 : 1319 - 1319
  • [29] Trends in high-performance switching and routing technologies
    Yamanaka, N
    Chen, TM
    Stuttgen, HJ
    IEEE COMMUNICATIONS MAGAZINE, 2002, 40 (11) : 36 - 37
  • [30] Optical switching in high-performance computing systems
    Lytel, R
    PHOTONICS IN SWITCHING, PROCEEDINGS, 2000, 32 : 176 - 176