Limit Theorems for Random Cubical Homology

被引:4
|
作者
Hiraoka, Yasuaki [1 ,2 ]
Tsunoda, Kenkichi [2 ,3 ]
机构
[1] Kyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[3] Osaka Univ, Grad Sch Sci, Dept Math, 1-1 Machikaneyama Cho, Toyonaka, Osaka 5600043, Japan
关键词
Random topology; Cubical complex; Cubical homology; Betti number; RANDOM SIMPLICIAL COMPLEXES;
D O I
10.1007/s00454-018-0007-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies random cubical sets in R-d. Given a cubical set X. R-d, a random variable.Q. [0, 1] is assigned for each elementary cube Q in X, and a random cubical set X(t) is defined by the sublevel set of X consisting of elementary cubes with.Q <= t for each t. [0, 1]. Under this setting, the main results of this paper show the limit theorems (law of large numbers and central limit theorem) for Betti numbers and lifetime sums of random cubical sets and filtrations. In addition to the limit theorems, the positivity of the limiting Betti numbers is also shown.
引用
收藏
页码:665 / 687
页数:23
相关论文
共 50 条
  • [31] LIMIT THEOREMS FOR MARKOV RANDOM SETS
    PITERBAR.LI
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1972, 17 (03): : 450 - &
  • [32] LIMIT-THEOREMS FOR RANDOM TREES
    TAKACS, L
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) : 5011 - 5014
  • [33] Limit theorems for sequences of random trees
    Balding, David
    Ferrari, Pablo A.
    Fraiman, Ricardo
    Sued, Mariela
    TEST, 2009, 18 (02) : 302 - 315
  • [34] LIMIT THEOREMS FOR AN ASYMMETRIC RANDOM WALK
    MIKLUKHI.OG
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (04): : 710 - &
  • [35] Strong limit theorems for random fields
    Gut, Allan
    ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 39 : 125 - 157
  • [36] Limit theorems for fuzzy random variables
    Proske, FN
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 143 - 145
  • [37] LIMIT THEOREMS FOR RANDOM POINTS IN A SIMPLEX
    Baci, Anastas
    Kabluchko, Zakhar
    Prochno, Joscha
    Sonnleitner, Mathias
    Thale, Christoph
    JOURNAL OF APPLIED PROBABILITY, 2022, 59 (03) : 685 - 701
  • [38] Limit theorems for random processes with random time substitution
    E. E. Permyakova
    Russian Mathematics, 2008, 52 (12) : 41 - 49
  • [39] Limit theorems for random transformations and processes in random environments
    Kifer, Y
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (04) : 1481 - 1518
  • [40] Limit Theorems for Random Processes with Random Time Substitution
    Permyakova, E. E.
    RUSSIAN MATHEMATICS, 2008, 52 (12) : 41 - 49