Ginzburg-Landau dynamics with a time-dependent magnetic field

被引:15
|
作者
Kaper, HG [1 ]
Takac, P
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
D O I
10.1088/0951-7715/11/2/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-dependent Ginzburg-Landau equations of superconductivity define a dynamical process when the applied magnetic field varies with time. Sufficient conditions (in terms of the time rate of change of the applied field) are given that, if satisfied, guarantee that this dynamical process is asymptotically autonomous. As time goes to infinity, the dynamical process asymptotically approaches a dynamical system whose attractor coincides with the omega-limit set of the dynamical process.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 50 条
  • [31] Time-dependent Ginzburg-Landau approach and its application to superconductivity
    Zagrodzinski, JA
    Nikiciuk, T
    Abal'osheva, IS
    Lewandowski, SJ
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2003, 16 (08): : 936 - 940
  • [32] Time-dependent Ginzburg-Landau equations for rotating and accelerating superconductors
    Lipavsky, P.
    Bok, J.
    Kolacek, J.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 492 : 144 - 151
  • [33] A convex splitting method for the time-dependent Ginzburg-Landau equation
    Wang, Yunxia
    Si, Zhiyong
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 999 - 1017
  • [34] Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity
    Gunter, DO
    Kaper, HG
    Leaf, GK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06): : 1943 - 1958
  • [35] Stability of periodic solutions of the time-dependent Ginzburg-Landau equations
    Zaouch, Fouzi
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (07): : 521 - 538
  • [36] Lp solutions to the time-dependent Ginzburg-Landau equations of superconductivity
    Wang, Shouhong
    Zhan, Mei-Qin
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (06): : 661 - 677
  • [37] CHARGE IMBALANCE WAVES AND TIME-DEPENDENT GINZBURG-LANDAU THEORY
    OCTAVIO, M
    SKOCPOL, WJ
    PHYSICA B & C, 1981, 107 (1-3): : 173 - 174
  • [38] NUCLEATION IN A TIME-DEPENDENT GINZBURG-LANDAU MODEL - A NUMERICAL STUDY
    VALLS, OT
    MAZENKO, GF
    PHYSICAL REVIEW B, 1990, 42 (10): : 6614 - 6622
  • [39] Solution theory of the coupled Time-Dependent Ginzburg-Landau equations
    Chen, Shuhong
    Guo, Boling
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2009, 2 (1-2) : 1 - 20
  • [40] The bifurcation of vortex current in the time-dependent Ginzburg-Landau model
    Xu, T
    Yang, GH
    Duan, YS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 157 - 158