Graph Based Representations of Density Distribution and Distances for Self-Organizing Maps

被引:21
|
作者
Tasdemir, Kadim [1 ]
机构
[1] Yasar Univ, Dept Comp Engn, TR-35100 Izmir, Turkey
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2010年 / 21卷 / 03期
关键词
Graph representation; self-organizing maps (SOMs); topology; visualization; DATA PROJECTION; NETWORKS;
D O I
10.1109/TNN.2010.2040200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The self-organizing map (SOM) is a powerful method for manifold learning because of producing a 2-D spatially ordered quantization of a higher dimensional data space on a rigid lattice and adaptively determining optimal approximation of the (unknown) density distribution of the data. However, a postprocessing visualization scheme is often required to capture the data manifold. A recent visualization scheme CONNvis, which is shown effective for clustering, uses a topology representing graph that shows detailed local data distribution within receptive fields. This brief proposes that this graph representation can be adapted to show local distances. The proposed graphs of local density and local distances provide tools to analyze the correlation between these two information and to merge them in various ways to achieve an advanced visualization. The brief also gives comparisons for several synthetic data sets.
引用
收藏
页码:520 / 526
页数:7
相关论文
共 50 条
  • [41] Efficient Clustering of Structured Documents Using Graph Self-Organizing Maps
    Hagenbuchner, Markus
    Tsoi, Ah Chung
    Sperduti, Alessandro
    Kc, Milly
    FOCUSED ACCESS TO XML DOCUMENTS, 2008, 4862 : 207 - +
  • [42] Self-organizing maps algorithm for parton distribution functions extraction
    Liuti, Simonetta
    Holcomb, Katherine A.
    Askanazi, Evan
    14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011), 2012, 368
  • [43] New Angle on the Parton Distribution Functions: Self-Organizing Maps
    Honkanen, H.
    Liuti, S.
    SPIN PHYSICS, 2009, 1149 : 293 - +
  • [44] Asymptotic behavior of self-organizing maps with nonuniform stimuli distribution
    Sadeghi, AA
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (01): : 281 - 299
  • [45] New avenue to the parton distribution functions: Self-organizing maps
    Honkanen, H.
    Liuti, S.
    Carnahan, J.
    Loitiere, Y.
    Reynolds, P. R.
    PHYSICAL REVIEW D, 2009, 79 (03):
  • [46] Obtaining parton distribution functions from self-organizing maps
    Honkanen, H.
    Liuti, S.
    Loitiere, Y. C.
    Brogan, D.
    Reynolds, P.
    Deep Inelastic Scattering, 2007, : 85 - 88
  • [47] Self-organizing maps based on limit cycle attractors
    Huang, Di-Wei
    Gentili, Rodolphe J.
    Reggia, James A.
    NEURAL NETWORKS, 2015, 63 : 208 - 222
  • [48] The Research of Text Mining Based on Self-Organizing Maps
    Ding, Yi
    Fu, Xian
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 537 - 541
  • [49] Classification of program behavior based on self-organizing maps
    Chou, WK
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 346 - 350
  • [50] SOMViz: Web-based Self-Organizing Maps
    Sara Irina Fabrikant
    Cedric Gabathuler
    André Skupin
    KN - Journal of Cartography and Geographic Information, 2015, 65 (2) : 81 - 91