Energy-Efficient Thermal-Aware Scheduling for RT Tasks Using TCPN

被引:2
|
作者
Rubio-Anguiano, L. [1 ]
Desirena-Lopez, G. [1 ]
Ramirez-Trevino, A. [1 ]
Briz, J. L. [2 ]
机构
[1] CINVESTAV IPN Unidad Guadalajara, Ave Bosque 1145, Zapopan 45019, Jalisco, Mexico
[2] Univ Zaragoza, DIIS I3A, Maria de Luna 1, Zaragoza 50018, Spain
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 07期
基金
欧盟地平线“2020”;
关键词
Real-Time scheduling; Timed Continuous Petri Nets; Modelling;
D O I
10.1016/j.ifacol.2018.06.307
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work leverages TCPNs to design an energy-efficient, thermal-aware real-time scheduler for a multiprocessor system that normally runs in a low state energy at maximum system utilization but its capable of increasing the clock frequency to serve aperiodic tasks, optimizing energy, and honoring temporal and thermal constraints. An off-line stage computes the minimum frequency required to run the periodic tasks at maximum CPU utilization, the proportion of each task's job to be run on each CPU, the maximum clock frequency that keeps temperature under a limit, and the available cycles (slack) with respect to the system with minimum frequency. Then, a Zero-Laxity online scheduler dispatches the periodic tasks according to the offline calculation. Upon the arrival of aperiodic tasks, it increases clock frequency in such a way that all periodic and aperiodic tasks are properly executed. Thermal and temporal requirements are always guaranteed, and energy consumption is minimized. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 242
页数:7
相关论文
共 50 条
  • [21] Thermal-Aware Scheduling for Future Chip Multiprocessors
    Stavrou, Kyriakos
    Trancoso, Pedro
    EURASIP JOURNAL ON EMBEDDED SYSTEMS, 2007, (01)
  • [22] Thermal-Aware Sensor Scheduling for Distributed Estimation
    Forte, Domenic
    Srivastava, Ankur
    DISTRIBUTED COMPUTING IN SENSOR SYSTEMS, PROCEEDINGS, 2010, 6131 : 116 - 129
  • [23] Enhanced Energy-Efficient Scheduling for Parallel Tasks Using Partial Optimal Slacking
    Su, Sen
    Huang, Qingjia
    Li, Jian
    Cheng, Xiang
    Xu, Peng
    Shuang, Kai
    COMPUTER JOURNAL, 2015, 58 (02): : 246 - 257
  • [24] Thermal-Aware Scheduling Collaborating with OS and Architecture
    Lee, Cheng-Yu
    Yang, Shuang-Jhu
    Chang, Rong-Guey
    2013 42ND ANNUAL INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2013, : 1044 - 1051
  • [25] Thermal-Aware Sensor Scheduling for Distributed Estimation
    Forte, Domenic
    Srivastava, Ankur
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2013, 9 (04)
  • [26] Deadline aware and energy-efficient scheduling algorithm for fine-grained tasks in mobile edge computing
    Lakhan, Abdullah
    Mohammed, Mazin Abed
    Rashid, Ahmed N.
    Kadry, Seifedine
    Abdulkareem, Karrar Hameed
    INTERNATIONAL JOURNAL OF WEB AND GRID SERVICES, 2022, 18 (02) : 168 - 193
  • [27] Energy-Efficient Real-Time Scheduling of DAG Tasks
    Bhuiyan, Ashikahmed
    Guo, Zhishan
    Saifullah, Abusayeed
    Guan, Nan
    Xiong, Haoyi
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2018, 17 (05)
  • [28] An energy-efficient scheduling algorithm for real-time tasks
    Ruan, Youlin
    Liu, Gan
    Han, Jianjun
    Li, Qinghua
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 965 - +
  • [29] A DVFS Based Energy-Efficient Tasks Scheduling in a Data Center
    Wang, Songyun
    Qian, Zhuzhong
    Yuan, Jiabin
    You, Ilsun
    IEEE ACCESS, 2017, 5 : 13090 - 13102
  • [30] An efficient energy and thermal-aware mapping for regular network-on-chip
    Xu, Changqing
    Liu, Yi
    Zhu, Zhangming
    Yang, YinTang
    IEICE ELECTRONICS EXPRESS, 2017, 14 (17):