Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study

被引:45
|
作者
Shuang, Siyao [1 ]
Lu, Songjiang [1 ]
Zhang, Bo [1 ]
Bao, Chen [1 ]
Kan, Qianhua [1 ]
Kang, Guozheng [1 ]
Zhang, Xu [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics; Nanoindentation; High-entropy alloys; Twin boundary; Dislocation evolution; STACKING-FAULT ENERGIES; DEFORMATION; SIMULATIONS; BEHAVIOR; SINGLE; PHASE; LOOP;
D O I
10.1016/j.commatsci.2021.110495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To study the effects of twin boundary and high-entropy on elastic-plastic behavior of high-entropy alloys (HEAs), molecular dynamics (MD) was employed to simulate the nanoindentation on single-crystal CoCrNiFeMn HEA (scHEA), twinned CoCrNiFeMn HEA (tw-HEA) bicrystal and twinned Ni (tw-Ni) bicrystal. The deformation behaviors of the three samples were then compared with each other. Simulations revealed that the load-drop phenomenon during the indentation in the HEAs is not so apparent as that in the Ni. Microstructure characterization showed that a dense dislocation network was localized below the indentation pit of the HEAs. These phenomena are related to the damping spreading behavior of dislocations underneath the indenter. Through the analysis of the plastic zone underneath the indentation, it is found that the twin boundary inhibits dislocation penetration, and moreover, provides a slipping path for dislocations. The radial distribution of dislocation density proves that dislocations in the indentation of the HEAs are more concentrated than that in the traditional metals. Understanding the sluggish dislocation behavior and twin boundary effect help understand the deformation mechanisms underlying the mechanical response of HEAs.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation
    L. Tian
    Z. M. Jiao
    G. Z. Yuan
    S. G. Ma
    Z. H. Wang
    H. J. Yang
    Y. Zhang
    J. W. Qiao
    Journal of Materials Engineering and Performance, 2016, 25 : 2255 - 2260
  • [42] Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy
    Zhang, Lijun
    Yu, Pengfei
    Cheng, Hu
    Zhang, Huan
    Diao, Haoyan
    Shi, Yunzhu
    Chen, Bilin
    Chen, Peiyong
    Feng, Rui
    Bai, Jie
    Jing, Qin
    Ma, Mingzhen
    Liaw, P. K.
    Li, Gong
    Liu, Riping
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (12): : 5871 - 5875
  • [43] The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi
    Yaoli Zhang
    Jinguo Li
    Xinguang Wang
    Yiping Lu
    Yizhou Zhou
    Xiaofeng Sun
    JournalofMaterialsScience&Technology, 2019, 35 (05) : 902 - 906
  • [44] Discovery of a Superconducting High-Entropy Alloy
    Kozelj, P.
    Vrtnik, S.
    Jelen, A.
    Jazbec, S.
    Jaglicic, Z.
    Maiti, S.
    Feuerbacher, M.
    Steurer, W.
    Dolinsek, J.
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)
  • [45] Atomistic understanding towards twin boundary on the effect of crack propagation in FeNiCrCoCu high-entropy alloy and Ni
    Zhang, Zhan
    Gao, Tinghong
    Li, Lianxin
    Gao, Yue
    Liu, Yutao
    Chen, Qian
    Xie, Quan
    Xiao, Qingquan
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [46] The development of studies in high-entropy alloy
    Gao, Jia-Cheng
    Li, Rui
    Gongneng Cailiao/Journal of Functional Materials, 2008, 39 (07): : 1059 - 1061
  • [47] High-entropy alloy: challenges and prospects
    Ye, Y. F.
    Wang, Q.
    Lu, J.
    Liu, C. T.
    Yang, Y.
    MATERIALS TODAY, 2016, 19 (06) : 349 - 362
  • [48] Mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy foam: A molecular dynamics study
    Nettey-Oppong, Ezekiel Edward
    Mensah, Emmanuel Essel
    Effah, Elijah
    Asare, Eric
    Nartey, Martinson Addo
    SOLID STATE COMMUNICATIONS, 2023, 371
  • [49] Nanoscale high-entropy alloy for electrocatalysis
    Han, Xiao
    Wu, Geng
    Zhao, Shuyan
    Guo, Jingjing
    Yan, Muyu
    Hong, Xun
    Wang, Dingsheng
    MATTER, 2023, 6 (06) : 1717 - 1751
  • [50] High-entropy alloy nanomaterials for electrocatalysis
    Cui, Mingjin
    Zhang, Ying
    Xu, Bo
    Xu, Fei
    Chen, Jianwei
    Zhang, Shaoyin
    Chen, Chunhong
    Luo, Zhimin
    CHEMICAL COMMUNICATIONS, 2024, 60 (87) : 12615 - 12632