Modular projective representations of direct products of finite groups

被引:0
|
作者
Barannyk, LF [1 ]
机构
[1] Pedag Acad, Inst Math, PL-76200 Slupsk, Poland
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2003年 / 63卷 / 04期
关键词
twisted group rings; modular representations; projective representations; twisted group algebras;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, S a field of characteristic p or a complete discrete valuation ring of characteristic p. We denote by S(lambda)G a twisted group ring of the group G and the ring S with an S-factor system A lambda Z(2) (G, S-*) (see [17], pp. 2-4). Let p\\G\ and G = G(p) x B be the direct product of a p-subgroup G. and p'-subgroup B. In this paper we establish necessary and sufficient conditions that every indecomposable S(lambda)G-module is the outer tensor product of an indecomposable S(lambda)G(p)-module and an irreducible (SB)-B-lambda-module.
引用
收藏
页码:537 / 554
页数:18
相关论文
共 50 条