An object-based graph model for unsupervised change detection in high resolution remote sensing images

被引:20
|
作者
Wu, Junzheng [1 ,2 ]
Li, Biao [1 ]
Qin, Yao [2 ]
Ni, Weiping [2 ]
Zhang, Han [2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, ATR Bldg,119,Deya Rd, Changsha, Hunan, Peoples R China
[2] Northwest Inst Nucl Technol, Dept Remote Sensing, Xian, Peoples R China
关键词
CHANGE VECTOR ANALYSIS;
D O I
10.1080/01431161.2021.1937372
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The difference image that represents the change levels is pivotal in unsupervised change detection tasks. An object-based graph model is proposed in this paper to generate more reliable difference images from high resolution remote sensing images. The model consists of three main steps, including segmentation, graph construction, and change measurement. First, the bi-temporal images are segmented by the fractal net evolution approach to obtain objects as the basic element for further analysis. Second, a weighted graph for each segmented object is constructed using itself and the adjacent objects as the vertexes, meanwhile, the weights are defined using objects and common boundaries. Third, a measure function is designed to evaluate the similarity between graphs, and the change level is measured based on the similarity between the graphs with the same structure in the bi-temporal images. Experimental results on three optical and two SAR datasets demonstrate the effectiveness and superiority of the proposed approach comparing with some state-of-the-art approaches.
引用
收藏
页码:6212 / 6230
页数:19
相关论文
共 50 条
  • [31] Object-based City Land Cover Classification and Change Analysis with Multi-temporal High Resolution Remote Sensing Images in Jiangyin
    Ning Xiaogang
    Zhang Jixian
    Chen Zhiyong
    2013 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2013, : 107 - 110
  • [32] Object Detection in High-Resolution Remote Sensing Images Using Rotation Invariant Parts Based Model
    Zhang, Wanceng
    Sun, Xian
    Fu, Kun
    Wang, Chenyuan
    Wang, Hongqi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 74 - 78
  • [33] Object-oriented change detection approach for high-resolution remote sensing images based on multiscale fusion
    Wang, Chao
    Xu, Mengxi
    Wang, Xin
    Zheng, Shengnan
    Ma, Zhenli
    JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [34] Fine Object Change Detection Based on Vector Boundary and Deep Learning With High-Resolution Remote Sensing Images
    Shi, Jiacheng
    Liu, Wei
    Zhu, Yihu
    Wang, Shengli
    Hao, Sibao
    Zhu, Changming
    Shan, Haoyu
    Li, Erzhu
    Li, Xing
    Zhang, Lianpeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4094 - 4103
  • [35] A probabilistic generative model for unsupervised invariant change detection in remote sensing images
    Nava, Fernando Perez
    Nava, Alejandro Perez
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2362 - 2365
  • [36] Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images
    Shen, Xiaole
    Guo, Yiquan
    Cao, Jinzhou
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [37] Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images
    Shen X.
    Guo Y.
    Cao J.
    PeerJ Computer Science, 2023, 9 : 1 - 23
  • [38] Occluded Object Detection in High-Resolution Remote Sensing Images Using Partial Configuration Object Model
    Qiu, Shaohua
    Wen, Gongjian
    Fan, Yaxiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (05) : 1909 - 1925
  • [39] Bipartite Graph Attention Autoencoders for Unsupervised Change Detection Using VHR Remote Sensing Images
    Jia, Meng
    Zhang, Cheng
    Zhao, Zhiqiang
    Wang, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] UNSUPERVISED CHANGE DETECTION MODEL BASED ON HYBRID CONDITIONAL RANDOM FIELD FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGERY
    Lv, Pengyuan
    Zhong, Yanfei
    Zhao, Ji
    Zhang, Liangpei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1863 - 1866