Deep semantic segmentation for detecting eucalyptus planted forests in the Brazilian territory using sentinel-2 imagery

被引:25
|
作者
da Costa, Luciana Borges [1 ]
de Carvalho, Osmar Luiz Ferreira [2 ]
de Albuquerque, Anesmar Olino [1 ]
Gomes, Roberto Arnaldo Trancoso [1 ]
Guimaraes, Renato Fontes [1 ]
de Carvalho Junior, Osmar Abilio [1 ]
机构
[1] Univ Brasilia, Dept Geog, Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil
关键词
Deep learning; afforestation; Efficient-net; U-net; DeepLab; INSTANCE SEGMENTATION; OBJECT DETECTION; AREAS;
D O I
10.1080/10106049.2021.1943009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research aims to analyze the use of deep semantic segmentation to detect eucalyptus afforestation areas using Sentinel-2 images. The study compared six architectures (U-net, DeepLabv3+, FPN, MANet, PSPNet, LinkNet) with four encoders (ResNet-101, ResNeXt-101, Efficient-net-b3 and Efficient-net-b7), using 10 spectral bands. Even though the differences were not large among the different models, we found that the Efficient-net-b7 was the best backbone among all architectures, and the best overall model was DeepLabv3+ with the Efficient-net-b7 backbone, achieving an IoU of 76.57. Moreover, we compared the mapping of large satellite images with the sliding window technique with overlapping pixels considering six stride values. We found that sliding windows with lower stride values significantly minimized errors in the frame edge both visually and quantitively (metrics). Semantic segmentation allows an evident distinction between the afforestation and the natural vegetation, being fast and efficient for spatial distribution analysis of afforestation changes in Brazil.
引用
收藏
页码:6538 / 6550
页数:13
相关论文
共 50 条
  • [21] Landslide extraction using a novel empirical method and binary semantic segmentation U-NET framework using sentinel-2 imagery
    Devara, Meghanadh
    Maurya, Vipin Kumar
    Dwivedi, Ramji
    REMOTE SENSING LETTERS, 2024, 15 (03) : 326 - 338
  • [22] Evaluation of the Potential of Convolutional Neural Networks and Random Forests for Multi-Class Segmentation of Sentinel-2 Imagery
    Syrris, Vasileios
    Hasenohr, Paul
    Delipetrev, Blagoj
    Kotsev, Alexander
    Kempeneers, Pieter
    Soille, Pierre
    REMOTE SENSING, 2019, 11 (08)
  • [23] Deep Learning Model Development for Detecting Coffee Tree Changes Based on Sentinel-2 Imagery in Vietnam
    Quang Toan Le
    Kinh Bac Dang
    Tuan Linh Giang
    Thi Huyen Ai Tong
    Vu Giang Nguyen
    Thi Dieu Linh Nguyen
    Yasir, Muhammad
    IEEE ACCESS, 2022, 10 : 109097 - 109107
  • [24] Benchmark for Building Segmentation on Up-Scaled Sentinel-2 Imagery
    Illarionova, Svetlana
    Shadrin, Dmitrii
    Shukhratov, Islomjon
    Evteeva, Ksenia
    Popandopulo, Georgii
    Sotiriadi, Nazar
    Oseledets, Ivan
    Burnaev, Evgeny
    REMOTE SENSING, 2023, 15 (09)
  • [25] Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset
    Wenger, Romain
    Puissant, Anne
    Weber, Jonathan
    Idoumghar, Lhassane
    Forestier, Germain
    REMOTE SENSING, 2023, 15 (01)
  • [26] LAND COVER SEGMENTATION WITH SPARSE ANNOTATIONS FROM SENTINEL-2 IMAGERY
    Galatola, Marco
    Arnaudo, Edoardo
    Barco, Luca
    Rossi, Claudio
    Dominici, Fabrizio
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6952 - 6955
  • [27] Developing a New Method to Rapidly Map Eucalyptus Distribution in Subtropical Regions Using Sentinel-2 Imagery
    Tang, Chunxian
    Jiang, Xiandie
    Li, Guiying
    Lu, Dengsheng
    FORESTS, 2024, 15 (10):
  • [28] Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery
    Isip, M. F.
    Alberto, R. T.
    Biagtan, A. R.
    SPATIAL INFORMATION RESEARCH, 2020, 28 (03) : 369 - 375
  • [29] Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery
    M. F. Isip
    R. T. Alberto
    A. R. Biagtan
    Spatial Information Research, 2020, 28 : 369 - 375
  • [30] New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery
    Zheng, Qiong
    Huang, Wenjiang
    Cui, Ximin
    Shi, Yue
    Liu, Linyi
    SENSORS, 2018, 18 (03)