Deep semantic segmentation for detecting eucalyptus planted forests in the Brazilian territory using sentinel-2 imagery

被引:25
|
作者
da Costa, Luciana Borges [1 ]
de Carvalho, Osmar Luiz Ferreira [2 ]
de Albuquerque, Anesmar Olino [1 ]
Gomes, Roberto Arnaldo Trancoso [1 ]
Guimaraes, Renato Fontes [1 ]
de Carvalho Junior, Osmar Abilio [1 ]
机构
[1] Univ Brasilia, Dept Geog, Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil
关键词
Deep learning; afforestation; Efficient-net; U-net; DeepLab; INSTANCE SEGMENTATION; OBJECT DETECTION; AREAS;
D O I
10.1080/10106049.2021.1943009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research aims to analyze the use of deep semantic segmentation to detect eucalyptus afforestation areas using Sentinel-2 images. The study compared six architectures (U-net, DeepLabv3+, FPN, MANet, PSPNet, LinkNet) with four encoders (ResNet-101, ResNeXt-101, Efficient-net-b3 and Efficient-net-b7), using 10 spectral bands. Even though the differences were not large among the different models, we found that the Efficient-net-b7 was the best backbone among all architectures, and the best overall model was DeepLabv3+ with the Efficient-net-b7 backbone, achieving an IoU of 76.57. Moreover, we compared the mapping of large satellite images with the sliding window technique with overlapping pixels considering six stride values. We found that sliding windows with lower stride values significantly minimized errors in the frame edge both visually and quantitively (metrics). Semantic segmentation allows an evident distinction between the afforestation and the natural vegetation, being fast and efficient for spatial distribution analysis of afforestation changes in Brazil.
引用
收藏
页码:6538 / 6550
页数:13
相关论文
共 50 条
  • [1] SEMANTIC SEGMENTATION OF OIL WELL SITES USING SENTINEL-2 IMAGERY
    Wu, Hao
    Dong, Hongli
    Wang, Zhibao
    Bai, Lu
    Huo, Fengcai
    Tao, Jinhua
    Chen, Liangfu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6901 - 6904
  • [2] Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models
    Al-Dabbagh, Ali Mahdi
    Ilyas, Muhammad
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [3] Clouds Classification from Sentinel-2 Imagery with Deep Residual Learning and Semantic Image Segmentation
    Liu, Cheng-Chien
    Zhang, Yu-Cheng
    Chen, Pei-Yin
    Lai, Chien-Chih
    Chen, Yi-Hsin
    Cheng, Ji-Hong
    Ko, Ming-Hsun
    REMOTE SENSING, 2019, 11 (02)
  • [4] FOREST SEMANTIC SEGMENTATION BASED ON DEEP LEARNING USING SENTINEL-2 IMAGES
    Hizal, C.
    Gulsu, G.
    Akgun, H. Y.
    Kulavuz, B.
    Bakirman, T.
    Aydin, A.
    Bayram, B.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 229 - 236
  • [5] Semantic Segmentation of Sentinel-2 Imagery for Mapping Irrigation Center Pivots
    Graf, Lukas
    Bach, Heike
    Tiede, Dirk
    REMOTE SENSING, 2020, 12 (23) : 1 - 19
  • [6] A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
    Abadal, Sauc
    Salgueiro, Luis
    Marcello, Javier
    Vilaplana, Veronica
    REMOTE SENSING, 2021, 13 (22)
  • [7] Mapping tree species in natural and planted forests using Sentinel-2 images
    Xi, Yanbiao
    Tian, Jia
    Jiang, Hailing
    Tian, Qingjiu
    Xiang, Hengxing
    Xu, Nianxu
    REMOTE SENSING LETTERS, 2022, 13 (06) : 544 - 555
  • [8] SEMANTIC SEGMENTATION USING A UNET ARCHITECTURE ON SENTINEL-2 DATA
    Kotaridis, I
    Lazaridou, M.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 119 - 126
  • [9] Evaluation of Semantic Segmentation Methods for Land Use with Spectral Imaging Using Sentinel-2 and PNOA Imagery
    Pedrayes, Oscar D.
    Lema, Dario G.
    Garcia, Daniel F.
    Usamentiaga, Ruben
    Alonso, Angela
    REMOTE SENSING, 2021, 13 (12)
  • [10] SEMANTIC SEGMENTATION OF BURNED AREAS IN SENTINEL-2 SATELLITE IMAGES USING DEEP LEARNING MODELS
    Ouadou, Anes
    Huangal, David
    Hurt, J. Alex
    Scott, Grant J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6366 - 6369