Machinery fault diagnosis using least squares support vector machine

被引:0
|
作者
Zhao, Lingling [1 ]
Yang, Kuihe [1 ]
机构
[1] Hebei Univ Sci & Technol, Coll Informat, Shijiazhuang 050054, Peoples R China
基金
中国博士后科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to enhance fault diagnosis precision, an improved fault diagnosis model based on least squares support vector machine (LSSVM) is presented. In the model, the wavelet packet analysis and LSSVM are combined effectively. The power spectrum of fault signals are decomposed by wavelet packet analysis, which predigests choosing method of fault eigenvectors. And then the LSSVM is adopted to realize fault diagnosis. The non-sensitive loss function is replaced by quadratic loss function and the inequality constraints are replaced by equality constraints. Consequently, quadratic programming problem is simplified as the problem of solving linear equation groups, and the SVM algorithm is realized by least squares method. It is presented to choose parameter of kernel function in definite range by dynamic way, which enhances preciseness rate of recognition. The simulation results show the model has strong non-linear solution and anti-jamming ability, and it can effectively distinguish fault type.
引用
收藏
页码:342 / +
页数:3
相关论文
共 50 条
  • [21] Fault diagnosis Method of Gear Based on Local mean decomposition and Least squares support vector machine
    Wan Zhou
    Liao Xingzhi
    Xiong Xin
    Li Zhirong
    AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 548 - 554
  • [22] Fault Diagnosis Model of Photovoltaic Array Based on Least Squares Support Vector Machine in Bayesian Framework
    Sun, Jiamin
    Sun, Fengjie
    Fan, Jieqing
    Liang, Yutu
    APPLIED SCIENCES-BASEL, 2017, 7 (11):
  • [23] Least Squares Support Vector Machine Classifiers Using PCNNs
    Sang, Yongsheng
    Zhang, Haixian
    Zuo, Lin
    2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 828 - 833
  • [24] Multiclass Classification using Least Squares Support Vector Machine
    Jafar, Nurkamila
    Thamrin, Sri Astuti
    Lawi, Armin
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND CYBERNETICS, 2016, : 7 - 10
  • [25] Bearing fault diagnosis using simulated annealing algorithm and least squares support vector machines
    Sui, Wentao
    Lu, Changhou
    Wang, Wilson
    Zhang, Dan
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2010, 30 (02): : 119 - 122
  • [26] Sensor Fault Detection with Online Sparse Least Squares Support Vector Machine
    Guo Su
    Deng Fang
    Sun Jian
    Li Fengmei
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 6220 - 6224
  • [27] Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform
    Heidari, Mohammad
    Homaei, Hadi
    Golestanian, Hossein
    Heidari, Ali
    JOURNAL OF VIBROENGINEERING, 2016, 18 (02) : 860 - 875
  • [28] Least squares support vector machine classifiers
    Katholieke Universiteit Leuven, Department of Electrical Engineering, ESAT-SISTA Kardinaal, Mercierlaan 94, B-3001 Leuven , Belgium
    Neural Process Letters, 3 (293-300):
  • [29] Semisupervised Least Squares Support Vector Machine
    Adankon, Mathias M.
    Cheriet, Mohamed
    Biem, Alain
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (12): : 1858 - 1870
  • [30] Least squares support vector machine ensemble
    Sun, BY
    Huang, DS
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2013 - 2016