Gas concentration impedance of solid oxide fuel cell anodes

被引:98
|
作者
Bessler, Wolfgang G. [1 ]
Gewies, Stefan [1 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
关键词
D O I
10.1149/1.2720639
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This series of papers presents details of numerical studies of the nature of the impedance of solid oxide fuel cell (SOFC) anodes caused by gas-phase transport processes. The present part treats channel geometries where gases are transported parallel to the electrode surface. Two cases are investigated: (i) channel flow by forced convection, a typical situation in planar stack segments; and (ii) channel diffusion without convective flow, a typical situation in laboratory-scale single-chamber experiments using symmetrical cells. Current/voltage curves and electrochemical impedance spectra are simulated based on the Navier-Stokes transport equations and nonlinear electrochemistry models. Both channel flow and channel diffusion cause a capacitive behavior in the form of an resistance-capacitive (RC)-type semicircle in the Nyquist diagram. Its resistance and relaxation frequency strongly depend on operation parameters (gas concentration, flow rate, temperature, electrochemical polarization) and geometry (channel length and cross-sectional area). The model predictions are in good quantitative agreement with four different experimental studies published in the literature. The simulation approach thus allows a physically based assignment of observed gas concentration impedance processes. (c) 2007 The Electrochemical Society.
引用
收藏
页码:B548 / B559
页数:12
相关论文
共 50 条
  • [31] Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes
    Madsen, BD
    Barnett, SA
    SOLID STATE IONICS, 2005, 176 (35-36) : 2545 - 2553
  • [32] Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
    Ruiz-Morales, JC
    Canales-Vázquez, J
    Savaniu, C
    Marrero-López, D
    Zhou, WZ
    Irvine, JTS
    NATURE, 2006, 439 (7076) : 568 - 571
  • [33] A modeling study of porous composite microstructures for solid oxide fuel cell anodes
    Nishida, Yasutaka
    Itoh, Satoshi
    ELECTROCHIMICA ACTA, 2011, 56 (07) : 2792 - 2800
  • [34] Simulation of coarsening in three-phase solid oxide fuel cell anodes
    Chen, Hsun-Yi
    Yu, Hui-Chia
    Cronin, J. Scott
    Wilson, James R.
    Barnett, Scott A.
    Thornton, Katsuyo
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1333 - 1337
  • [35] In situ Fourier transform infrared emission of solid oxide fuel cell anodes
    Pomfret, Michael B.
    Steinhurst, Daniel A.
    Owrutsky, Jeffrey C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [36] Influence of sealing material on nickel/YSZ solid oxide fuel cell anodes
    Larsen, PH
    Primdahl, S
    Mogensen, M
    HIGH TEMPERATURE ELECTROCHEMISTRY: CERAMICS AND METALS, 1996, : 331 - 338
  • [37] Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
    Juan Carlos Ruiz-Morales
    Jesús Canales-Vázquez
    Cristian Savaniu
    David Marrero-López
    Wuzong Zhou
    John T. S. Irvine
    Nature, 2006, 439 : 568 - 571
  • [38] Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell
    Gorte, RJ
    Park, S
    Vohs, JM
    Wang, CH
    ADVANCED MATERIALS, 2000, 12 (19) : 1465 - 1469
  • [39] Microstructure evolution of Solid Oxide Fuel Cell anodes characterized by persistent homology
    Pawlowski, Piotr
    Buchaniec, Szymon
    Prokop, Tomasz
    Iwai, Hiroshi
    Brus, Grzegorz
    ENERGY AND AI, 2023, 14
  • [40] METAL ZIRCONIA INTERFACIAL REACTIONS IN SOLID OXIDE FUEL-CELL ANODES
    BARDI, U
    ROSS, PN
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C414 - C414