Approximation of stochastic advection-diffusion equation using compact finite difference technique

被引:0
|
作者
Bishehniasar, M. [1 ]
Soheili, A. R. [2 ]
机构
[1] Univ Sistan & Baluchestan Zahedan, Dept Math, Sistan Va Baluchestan, Iran
[2] Ferdowsi Univ Mashhad, Sch Math Sci, Dept Appl Math, Ctr Excellence Modeling & Control Syst, Mashhad, Iran
关键词
Stochastic partial differential equation; compact finite difference scheme; stability; semi-implicit; Milstein method; STABILITY; SCHEMES; DRIVEN; NOISE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a new method for solving the stochastic advection-diffusion equation of Ito type. In this work, we use a compact finite difference approximation for discretizing spatial derivatives of the mentioned equation and semi-implicit Milstein scheme for the resulting linear stochastic system of differential equation. The main purpose of this paper is the stability investigation of the applied method. finally, some numerical examples are provided to show the accuracy and efficiency of the proposed technique.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 50 条
  • [31] Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes
    Appadu, A. R.
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [32] Stochastic solutions for the two-dimensional advection-diffusion equation
    Wang, XL
    Xiu, DB
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 578 - 590
  • [33] On the stability of explicit finite difference methods for advection-diffusion equations
    Zeng, Xianyi
    Hasan, Md Mahmudul
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) : 421 - 446
  • [34] A stabilized formulation for the advection-diffusion equation using the Generalized Finite Element Method
    Turner, D. Z.
    Nakshatrala, K. B.
    Hjelmstad, K. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (01) : 64 - 81
  • [35] A stochastic model for the advection-diffusion equation of air pollution in the atmosphere
    Barrera, P
    Spagnolo, B
    AIR POLLUTION V, 1997, : 277 - 286
  • [36] Explicit Finite Difference Methods for the Solution of the One Dimensional Time Fractional Advection-Diffusion Equation
    Al-Shibani, F. S.
    Ismail, A. I. Md
    Abdullah, F. A.
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 380 - 385
  • [37] Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements
    Siegel, P
    Mose, R
    Ackerer, P
    Jaffre, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 24 (06) : 595 - 613
  • [38] Solutions of the advection-diffusion equation
    Tirabassi, T
    AIR POLLUTION V, 1997, : 197 - 206
  • [39] An enriched finite element method to fractional advection-diffusion equation
    Luan, Shengzhi
    Lian, Yanping
    Ying, Yuping
    Tang, Shaoqiang
    Wagner, Gregory J.
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 181 - 201
  • [40] A multiscale/stabilized finite element method for the advection-diffusion equation
    Masud, A
    Khurram, RA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (21-22) : 1997 - 2018