Gaussian Fibonacci Circulant Type Matrices

被引:3
|
作者
Jiang, Zhaolin [1 ]
Xin, Hongxia [1 ,2 ]
Lu, Fuliang [1 ]
机构
[1] Linyi Univ, Dept Math, Linyi 276000, Shandong, Peoples R China
[2] Shandong Normal Univ, Dept Math, Jinan 250014, Shandong, Peoples R China
关键词
INTEGRAL-EQUATIONS; DETERMINANTS;
D O I
10.1155/2014/592782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Circulant matrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for n > 2 and give the explicit determinants and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices are presented, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Poisson convergence of eigenvalues of circulant type matrices
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    EXTREMES, 2011, 14 (04) : 365 - 392
  • [42] Circulant type matrices with heavy tailed entries
    Bose, Arup
    Guha, Suman
    Hazra, Rajat Subhra
    Saha, Koushik
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (11) : 1706 - 1716
  • [43] The Fibonacci–Circulant Sequences and Their Applications
    Ömür Deveci
    Erdal Karaduman
    Colin M. Campbell
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 1033 - 1038
  • [44] On the norms of circulant matrices with the Fibonacci and Lucas numbers (vol 160, pg 125, 2005)
    Solak, Sueleyman
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1855 - 1856
  • [45] On the norms of circulant matrices with the Fibonacci and Lucas numbers (vol 160, pg 125, 2005)
    Uslu, K.
    Nalli, A.
    Sen, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 997 - 998
  • [46] The spectral norms of g-circulant matrices with classical Fibonacci and Lucas numbers entries
    Zhou, Jianwei
    Jiang, Zhaolin
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 582 - 587
  • [47] One-bit compressed sensing with partial Gaussian circulant matrices
    Dirksen, Sjoerd
    Jung, Hans Christian
    Rauhut, Holger
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (03) : 601 - 626
  • [48] Small circulant complex Hadamard matrices of Butson type
    Hiranandani, Gaurush
    Schlenker, Jean-Marc
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 306 - 314
  • [49] Circulant decomposition of a matrix and the eigenvalues of Toeplitz type matrices
    Hariprasad, M.
    Venkatapathi, Murugesan
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 468
  • [50] Explicit inverses of generalized Tribonacci circulant type matrices
    Shen, Shouqiang
    Liu, Weijun
    Feng, Lihua
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (03): : 689 - 699