X-ray Thomson scattering in warm dense matter at low frequencies

被引:28
|
作者
Murillo, Michael S. [1 ]
机构
[1] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 03期
关键词
EQUATION-OF-STATE; LIQUID-METALS; ION-ION; PLASMAS; RESISTIVITY; DERIVATION; DYNAMICS; MODELS;
D O I
10.1103/PhysRevE.81.036403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the "plasmon-pole"-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] First-principles method for x-ray Thomson scattering including both elastic and inelastic features in warm dense matter
    Mo, Chongjie
    Fu, Zhen-Guo
    Zhang, Ping
    Kang, Wei
    Zhang, Weiyan
    He, X. T.
    PHYSICAL REVIEW B, 2020, 102 (19)
  • [22] X-ray absorption for the study of warm dense matter
    Levy, A.
    Dorchies, F.
    Harmand, M.
    Fourment, C.
    Hulin, S.
    Peyrusse, O.
    Santos, J. J.
    Antici, P.
    Audebert, P.
    Fuchs, J.
    Lancia, L.
    Mancic, A.
    Nakatsutsumi, M.
    Mazevet, S.
    Recoules, V.
    Renaudin, P.
    Fourmaux, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [23] X-ray scattering from warm dense iron
    White, S.
    Nersisyan, G.
    Kettle, B.
    Dzelzainis, T. W. J.
    McKeever, K.
    Lewis, C. L. S.
    Otten, A.
    Siegenthaler, K.
    Kraus, D.
    Roth, M.
    White, T.
    Gregori, G.
    Gericke, D. O.
    Baggott, R.
    Chapman, D. A.
    Wuensch, K.
    Vorberger, J.
    Riley, D.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (03) : 573 - 577
  • [24] First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter
    Mo, Chongjie
    Fu, Zhenguo
    Kang, Wei
    Zhang, Ping
    He, X. T.
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [25] Theoretical treatments of the bound-free contribution and experimental best practice in X-ray Thomson scattering from warm dense matter
    Mattern, Brian A.
    Seidler, Gerald T.
    PHYSICS OF PLASMAS, 2013, 20 (02)
  • [26] Demonstration of x-ray Thomson scattering using picosecond K-α x-ray sources in the characterization of dense heated matter
    Kritcher, A. L.
    Neumayer, P.
    Lee, H. J.
    Doeppner, T.
    Falcone, R. W.
    Glenzer, S. H.
    Morse, E. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [27] Toward using collective x-ray Thomson scattering to study C-H demixing and hydrogen metallization in warm dense matter conditions
    Ranjan, D.
    Ramakrishna, K.
    Voigt, K.
    Humphries, O. S.
    Heuser, B.
    Stevenson, M. G.
    Luetgert, J.
    He, Z.
    Qu, C.
    Schumacher, S.
    May, P. T.
    Amouretti, A.
    Appel, K.
    Brambrink, E.
    Cerantola, V.
    Chekrygina, D.
    Fletcher, L. B.
    Goede, S.
    Harmand, M.
    Hartley, N. J.
    Hau-Riege, S. P.
    Makita, M.
    Pelka, A.
    Schuster, A. K.
    Smid, M.
    Toncian, T.
    Zhang, M.
    Preston, T. R.
    Zastrau, U.
    Vorberger, J.
    Kraus, D.
    PHYSICS OF PLASMAS, 2023, 30 (05)
  • [28] Probing warm dense lithium by inelastic X-ray scattering
    E. García Saiz
    G. Gregori
    D. O. Gericke
    J. Vorberger
    B. Barbrel
    R. J. Clarke
    R. R. Freeman
    S. H. Glenzer
    F. Y. Khattak
    M. Koenig
    O. L. Landen
    D. Neely
    P. Neumayer
    M. M. Notley
    A. Pelka
    D. Price
    M. Roth
    M. Schollmeier
    C. Spindloe
    R. L. Weber
    L.  van Woerkom
    K. Wünsch
    D. Riley
    Nature Physics, 2008, 4 : 940 - 944
  • [29] Probing warm dense lithium by inelastic X-ray scattering
    Saiz, E. Garcia
    Gregori, G.
    Gericke, D. O.
    Vorberger, J.
    Barbrel, B.
    Clarke, R. J.
    Freeman, R. R.
    Glenzer, S. H.
    Khattak, F. Y.
    Koenig, M.
    Landen, O. L.
    Neely, D.
    Neumayer, P.
    Notley, M. M.
    Pelka, A.
    Price, D.
    Roth, M.
    Schollmeier, M.
    Spindloe, C.
    Weber, R. L.
    van Woerkom, L.
    Wuensch, K.
    Riley, D.
    NATURE PHYSICS, 2008, 4 (12) : 940 - 944
  • [30] X-ray Thomson Scattering for measuring Dense Beryllium Plasma Collisionality
    Doeppner, T.
    Fortmann, C.
    Davis, P. F.
    Kritcher, A. L.
    Landen, O. L.
    Lee, H. J.
    Redmer, R.
    Regan, S. P.
    Glenzer, S. H.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244