Chip-scale high-performance digital Fourier Transform (dFT) spectrometers

被引:3
|
作者
Kita, Derek M. [1 ]
Miranda, Brando [2 ]
Rios, Carlos [1 ]
Favela, David [3 ]
Bono, David [1 ]
Michon, Jerome [1 ]
Lin, Hongtao [1 ]
Gu, Tian [1 ]
Hu, Juejun [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Ctr Brains Minds & Machines, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Integrated photonics; silicon photonics; optical spectrometer; SILICON-ON-INSULATOR; COMPACT; SPECTROSCOPY; DEPENDENCE;
D O I
10.1117/12.2518437
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
On-chip spectrometers have recently emerged as a promising alternative to conventional benchtop instruments with apparent Size, Weight, and Power (SWaP) advantages for applications including spectroscopic sensing, optical network performance monitoring, RF spectrum analysis, optical coherence tomography, and hyperspectral imaging. Existing on chip spectrometer designs, however, are limited in spectral channel count and signal-to-noise ratio (SNR). Here we demonstrate a transformative on-chip digital Fourier transform (dFT) spectrometer that can acquire high-resolution spectra via time-domain modulation of a reconfigurable Mach-Zehnder interferometer. The device, fabricated and packaged using industry-standard silicon photonics technology, claims the multiplex advantage to dramatically boost SNR and unprecedented scalability capable of addressing exponentially increasing numbers of spectral channels. We further explored and implemented machine learning regularization techniques to spectrum reconstruction. Using an `elastic-Di' regularized regression method that we developed, we achieved significant noise suppression for both broad (> 600 GHz) and narrow (< 25 GHz) spectral features, as well as spectral resolution enhancement beyond the classical Rayleigh criterion. The dFT architecture and spectrum reconstruction techniques demonstrated in this work will drive future work in on-chip optical spectroscopy and enable practical realizations of high-performance chip-scale spectrometers with large (> 1,000) spectral channel counts.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Predictive analog-to-digital converter for Fourier-transform spectrometers
    Deschenes, Jean-Daniel
    Potvin, Simon
    Ash, Jean-Simon
    Genest, Jerome
    APPLIED OPTICS, 2010, 49 (26) : 4883 - 4889
  • [32] Research on High-Performance Fourier Transform Algorithms Based on the NPU
    Li, Qing
    Zuo, Decheng
    Feng, Yi
    Wen, Dongxin
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [33] High-Performance Data Acquisition for Fourier Transform Mass Spectrometry
    Kozhinov, Anton N.
    Nagornov, Konstantin O.
    Tsybin, Yury O.
    CHIMIA, 2025, 79 (1-2) : 77 - 83
  • [34] The Design of On-chip Digital Fourier Transform Spectrometer
    Yu, Jiarui
    Wang, Weiping
    Cao, Jun
    Guoyu, Heyang
    Hu, Xiaoyan
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [35] Chip-scale, high power microstructure fiber laser
    Peyghambarian, N
    Schülzgen, A
    Mansuripur, M
    Moloney, JV
    Qiu, TQ
    Kaneda, Y
    Polynkin, P
    Li, L
    Wu, JF
    Polynkin, A
    Temyanko, VL
    Mafi, A
    Jiang, SB
    Spiegelberg, C
    Chavez, A
    Geng, JH
    Luo, T
    Advanced Devices and Materials for Laser Remote Sensing, 2005, 883 : 65 - 70
  • [36] High Performance DFT Architectures Using Winograd Fast Fourier Transform Algorithm
    Rathkanthiwar, Shubhangi
    Kakde, Sandeep
    Thakare, Rajesh
    Kamdi, Rahul
    Kamble, Shailesh
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, INDIA 2016, 2016, 433 : 559 - 567
  • [37] High-performance chip scale lasers have arrived
    Johnson, Sally Cole
    LASER FOCUS WORLD, 2023, 59 (04): : 16 - 19
  • [38] Chip-scale Integrated Optical Interconnects - A Key Enabler for Future High Performance Computing
    Haney, Michael
    Nair, Rohit
    Gu, Tian
    OPTOELECTRONIC INTERCONNECTS XII, 2012, 8267
  • [39] A scalable silicon photonic chip-scale optical switch for high performance computing systems
    Yu, Runxiang
    Cheung, Stanley
    Li, Yuliang
    Okamoto, Katsunari
    Proietti, Roberto
    Yin, Yawei
    Yoo, S. J. B.
    OPTICS EXPRESS, 2013, 21 (26): : 32655 - 32667
  • [40] High-speed nanoLEDs for chip-scale communication
    Murillo-Borjas, Bayron Lennin
    Li, Xi
    Gu, Qing
    NANO COMMUNICATION NETWORKS, 2021, 30