Local well-posedness and finite time blow-up of solutions to an attraction-repulsion chemotaxis system in higher dimensions

被引:2
|
作者
Hosono, Tatsuya [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Attraction– repulsion chemotaxis  system; Blow-up; Well-posedness; Cauchy problem; KELLER-SEGEL SYSTEM; PARABOLIC-ELLIPTIC SYSTEM; DRIFT-DIFFUSION SYSTEM; SINGULAR LIMIT PROBLEM; GLOBAL EXISTENCE; CAUCHY-PROBLEM; BEHAVIOR; MODEL; NONEXISTENCE; AGGREGATION;
D O I
10.1016/j.jmaa.2022.126009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for an attraction-repulsion chemotaxis system in Rn with the chemotactic coefficients of the attractant beta(1) and the repellent beta(2). In particular, these coefficients are important role in the global existence and blow up of the solutions. In this paper, we show the local well-posedness of solutions in the critical spaces L-n/2(R-n) and the finite time blow-up of the solution under the condition beta(1) > beta(2) in higher dimensional spaces. (c) 2022 The Authors. Published by Elsevier Inc.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction
    Lin, Ke
    Mu, Chunlai
    Zhou, Deqin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (06): : 1105 - 1134
  • [22] AKS-chemotaxis Model Generalized Well-posedness, Blow-up Dynamics and Controllability
    Willie, Robert
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [23] Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions
    Fujie, Kentaro
    Senba, Takasi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
  • [24] FRACTIONAL KELLER-SEGEL EQUATION: GLOBAL WELL-POSEDNESS AND FINITE TIME BLOW-UP
    Lafleche, Laurent
    Salem, Samir
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (08) : 2055 - 2087
  • [25] A blow-up result for attraction-repulsion system with nonlinear signal production and generalized logistic source
    Wang, Chang-Jian
    Zhao, Li-Xin
    Zhu, Xin-Cai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [26] Well-posedness and blow-up phenomena for a higher order shallow water equation
    Mu, Chunlai
    Zhou, Shouming
    Zeng, Rong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) : 3488 - 3499
  • [27] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    杨凌燕
    李晓光
    吴永洪
    Louis CACCETTA
    Acta Mathematica Scientia(English Series), 2017, 37 (04) : 941 - 948
  • [28] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    Mediterranean Journal of Mathematics, 2022, 19
  • [29] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [30] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948