We consider the Cauchy problem for an attraction-repulsion chemotaxis system in Rn with the chemotactic coefficients of the attractant beta(1) and the repellent beta(2). In particular, these coefficients are important role in the global existence and blow up of the solutions. In this paper, we show the local well-posedness of solutions in the critical spaces L-n/2(R-n) and the finite time blow-up of the solution under the condition beta(1) > beta(2) in higher dimensional spaces. (c) 2022 The Authors. Published by Elsevier Inc.
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Chiyo, Yutaro
Yokota, Tomomi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Yokota, Tomomi
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,
2022,
73
(02):