Local well-posedness and finite time blow-up of solutions to an attraction-repulsion chemotaxis system in higher dimensions

被引:2
|
作者
Hosono, Tatsuya [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Attraction– repulsion chemotaxis  system; Blow-up; Well-posedness; Cauchy problem; KELLER-SEGEL SYSTEM; PARABOLIC-ELLIPTIC SYSTEM; DRIFT-DIFFUSION SYSTEM; SINGULAR LIMIT PROBLEM; GLOBAL EXISTENCE; CAUCHY-PROBLEM; BEHAVIOR; MODEL; NONEXISTENCE; AGGREGATION;
D O I
10.1016/j.jmaa.2022.126009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for an attraction-repulsion chemotaxis system in Rn with the chemotactic coefficients of the attractant beta(1) and the repellent beta(2). In particular, these coefficients are important role in the global existence and blow up of the solutions. In this paper, we show the local well-posedness of solutions in the critical spaces L-n/2(R-n) and the finite time blow-up of the solution under the condition beta(1) > beta(2) in higher dimensional spaces. (c) 2022 The Authors. Published by Elsevier Inc.
引用
收藏
页数:32
相关论文
共 50 条