Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion

被引:131
|
作者
Krakhmalev, Pavel [1 ]
Fredriksson, Gunnel [1 ]
Svensson, Krister [1 ]
Yadroitsev, Igor [2 ]
Yadroitsava, Ina [2 ]
Thuvander, Mattias [3 ]
Peng, Ru [4 ]
机构
[1] Karlstad Univ, Dept Engn & Phys, SE-65188 Karlstad, Sweden
[2] Bloemfontein Cent Univ Technol, Dept Mech & Mech Engn, ZA-9300 Bloemfontein, Free State, South Africa
[3] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Management & Engn, SE-58183 Linkoping, Sweden
来源
METALS | 2018年 / 8卷 / 08期
基金
新加坡国家研究基金会;
关键词
316 L stainless steel; laser powder bed fusion; cellular solidification; solidification texture; electron microscopy; thermal stability of microstructure; MECHANICAL-PROPERTIES; MELTING SLM; ELECTROCHEMICAL PROPERTIES; CRYSTALLOGRAPHIC TEXTURE; PROCESS PARAMETERS; METAL-DEPOSITION; HEAT-TREATMENT; HIGH-STRENGTH; BEHAVIOR; PARTS;
D O I
10.3390/met8080643
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article overviews the scientific results of the microstructural features observed in 316 L stainless steel manufactured by the laser powder bed fusion (LPBF) method obtained by the authors, and discusses the results with respect to the recently published literature. Microscopic features of the LPBF microstructure, i.e., epitaxial nucleation, cellular structure, microsegregation, porosity, competitive colony growth, and solidification texture, were experimentally studied by scanning and transmission electron microscopy, diffraction methods, and atom probe tomography. The influence of laser power and laser scanning speed on the microstructure was discussed in the perspective of governing the microstructure by controlling the process parameters. It was shown that the three-dimensional (3D) zig-zag solidification texture observed in the LPBF 316 L was related to the laser scanning strategy. The thermal stability of the microstructure was investigated under isothermal annealing conditions. It was shown that the cells formed at solidification started to disappear at about 800 degrees C, and that this process leads to a substantial decrease in hardness. Colony boundaries, nevertheless, were quite stable, and no significant grain growth was observed after heat treatment at 1050 degrees C. The observed experimental results are discussed with respect to the fundamental knowledge of the solidification processes, and compared with the existing literature data.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel
    Yin, Qianxing
    Hu, Ping
    Xu, Zhao
    Li, Hui
    Li, Hui
    Shen, Shengnan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 605 - 614
  • [22] Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel
    Yin, Qianxing
    Hu, Ping
    Xu, Zhao
    Li, Hui
    Shen, Shengnan
    Journal of Materials Research and Technology, 2024, 28 : 605 - 614
  • [23] Weldability of Additively Manufactured Powder Bed Fusion 316L Stainless Steel Using Arc and Laser Welding
    Faes, Koen
    Nunes, Rafael
    Probst, Florian
    Ceuppens, Robin
    De Waele, Wim
    CRYSTALS, 2024, 14 (04)
  • [24] Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Chengsong
    Wang, Yong
    Zhang, Hua
    Ni, Hongwei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3896 - 3912
  • [25] Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing
    Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology , Pohang
    37673, Korea, Republic of
    不详
    37673, Korea, Republic of
    不详
    31460, Korea, Republic of
    不详
    33720, Finland
    不详
    51508, Korea, Republic of
    不详
    31080, Korea, Republic of
    不详
    37673, Korea, Republic of
    不详
    980-8577, Japan
    不详
    03722, Korea, Republic of
    Mater. Sci. Eng. A,
  • [26] Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing
    Kim, Rae Eon
    Jeong, Sang Guk
    Ha, Hyojeong
    Heo, Yoon-Uk
    Amanov, Auezhan
    Gu, Gang Hee
    Lee, Dong Jun
    Moon, Jongun
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 909
  • [27] Microstructure-Toughness relationships in 316L stainless steel produced by laser powder bed fusion
    de Sonis, Edouard
    Depinoy, Sylvain
    Giroux, Pierre-Francois
    Maskrot, Hicham
    Wident, Pierre
    Hercher, Olivier
    Villaret, Flore
    Gourgues-Lorenzon, Anne-Francoise
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 877
  • [28] Process Optimization and Microstructure Analysis to Understand Laser Powder Bed Fusion of 316L Stainless Steel
    Vallejo, Nathalia Diaz
    Lucas, Cameron
    Ayers, Nicolas
    Graydon, Kevin
    Hyer, Holden
    Sohn, Yongho
    METALS, 2021, 11 (05)
  • [29] Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion
    Trisnanto, Satria Robi
    Wang, Xianglong
    Brochu, Mathieu
    Omanovic, Sasha
    CORROSION SCIENCE, 2022, 196
  • [30] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860