MoS2-Quantum-Dot-Interspersed Li4Ti5O12 Nanosheets with Enhanced Performance for Li- and Na-Ion Batteries

被引:132
|
作者
Xu, Guobao [1 ]
Yang, Liwen [1 ,2 ]
Wei, Xiaolin [1 ]
Ding, Jianwen [1 ]
Zhong, Jianxin [1 ]
Chu, Paul K. [2 ]
机构
[1] Xiangtan Univ, Sch Phys & Optoelect, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL ENERGY-STORAGE; HIGH-RATE CAPABILITY; LITHIUM TITANATE; ANODE MATERIAL; SODIUM STORAGE; GRAPHENE; MOS2; MECHANISM; NETWORKS; ARRAYS;
D O I
10.1002/adfm.201505435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rational nanoscale surface engineering of electroactive nanoarchitecture is highly desirable, since it can both secure high surface-controlled energy storage and sustain the structural integrity for long-time and high-rate cycling. Herein, ultrasmall MoS2 quantum dots (QDs) are exploited as surface sensitizers to boost the electrochemical properties of Li4Ti5O12 (LTO). The LTO/MoS2 composite is prepared by anchoring 2D LTO nanosheets with ultrasmall MoS2 QDs using a simple and effective assembly technique. Impressively, such 0D/2D heterostructure composites possess enhanced surface-controlled Li/Na storage behavior. This unprecedented Li/Na storage process provides a LTO/MoS2 composite with outstanding Li/Na storage properties, such as high capacity and high-rate capability as well as long-term cycling stability. As anodes in Li-ion batteries, the materials have a stable specific capacity of 170 mAhg(-1) after 20 cycles and are able to retain 94.1% of this capacity after 1000 cycles, i.e., 160 mAhg(-1), at a high rate of 10 C. Due to these impressice performance, the presented 0D/2D heterostructure has great potential in high-performance LIBs and sodium-ion batteries.
引用
收藏
页码:3349 / 3358
页数:10
相关论文
共 50 条
  • [11] Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries
    Chen, Yuan
    Qian, Chen
    Zhang, Pengfei
    Zhao, Rongfang
    Lu, Junjie
    Chen, Ming
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 815 : 123 - 129
  • [12] High-Performance Li-Ion and Na-Ion Capacitors Based on a Spinel Li4Ti5O12 Anode and Carbonaceous Cathodes
    Akshay, Manohar
    Jyothilakshmi, Shaji
    Lee, Yun-Sung
    Aravindan, Vanchiappan
    SMALL, 2024, 20 (15)
  • [13] High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries
    Chen, Chunhui
    Agrawal, Richa
    Wang, Chunlei
    NANOMATERIALS, 2015, 5 (03): : 1469 - 1480
  • [14] Li4Ti5O12/TiO2-SiO2 and Li4Ti5O12/SiO2 composites as an anode material for Li-ion batteries
    Kurc, Beata
    IONICS, 2018, 24 (01) : 121 - 131
  • [15] Hydrothermal synthesis of Li4Ti5O12 nanosheets as anode materials for lithium ion batteries
    Wu, Hsin-Yi
    Hon, Min-Hsiung
    Kuan, Chi-Yun
    Leu, Ing-Chi
    RSC ADVANCES, 2015, 5 (44): : 35224 - 35229
  • [16] Li4Ti5O12/TiO2-SiO2 and Li4Ti5O12/SiO2 composites as an anode material for Li-ion batteries
    Beata Kurc
    Ionics, 2018, 24 : 121 - 131
  • [17] Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries
    Zhang, Biao
    Yu, Yang
    Liu, Yusi
    Huang, Zhen-Dong
    He, Yan-bing
    Kim, Jang-Kyo
    NANOSCALE, 2013, 5 (05) : 2100 - 2106
  • [18] Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries
    Chen, Jizhang
    Yang, Li
    Fang, Shaohua
    Tang, Yufeng
    ELECTROCHIMICA ACTA, 2010, 55 (22) : 6596 - 6600
  • [19] Enhanced electrochemical performance of La2O3-modified Li4Ti5O12 anode material for Li-ion batteries
    Wei, Aijia
    Li, Wen
    Zhang, Lihui
    Liu, Zhenfa
    2017 2ND INTERNATIONAL SEMINAR ON ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 231
  • [20] Electrospun NiCo2O4 nanotubes as anodes for Li- and Na-ion batteries
    Li, Linlin
    Ding, Yonghao
    Yu, Deshuang
    Li, Lei
    Ramakrishna, Seeram
    Peng, Shengjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 : 1286 - 1293