A density-based matrix transformation clustering method for electrical load

被引:2
|
作者
Li, Naiwen [1 ]
Wu, Xian [1 ]
Dong, Jianjun [2 ,3 ]
Zhang, Dan [2 ,3 ]
Gao, Shuai [1 ]
机构
[1] Liaoning Tech Univ, Sch Business Adm, Huludao, Liaoning, Peoples R China
[2] Liaoning Tech Univ, Coll Safety Sci & Engn, Huludao, Liaoning, Peoples R China
[3] Liaoning Tech Univ, Key Lab Mine Thermodynam Disasters & Control, Minist Educ, Huludao, Liaoning, Peoples R China
来源
PLOS ONE | 2022年 / 17卷 / 08期
关键词
RECOGNITION;
D O I
10.1371/journal.pone.0272767
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Feature extraction of electrical load plays a vital role in providing a reliable basis and guidance for power companies. In this paper, we propose a novel clustering algorithm named the Density-based Matrix Transformation (DBMT) Clustering method to extract features (peaks, valleys and trends) of electrical load curves. The main objective of the algorithm is to reorder the data items until the data items belonging to the same cluster are organized together; that is, the adjacent matrix is rearranged to the type of block diagonal. This method adaptively determines the number of clusters and filters out noise without input global parameters. Moreover, for the specific characteristics of raw electrical load data, we propose a variant of Dynamic Time Warp (DTW) distance, dsDTW, which aligns the peaks, valleys and trends of load curves meanwhile dealing with missing values in different situations. After feeding the dsDTW adjacent matrix to DBMT, the results indicate that our proposal can accurately extract the feature of the load curves compared to different clustering methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] EDDS: An Enhanced Density-based Method for Clustering Data Streams
    Al Abd Alazeez, Ammar
    Jassim, Sabah
    Du, Hongbo
    2017 46TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS (ICPPW), 2017, : 103 - 112
  • [22] Generalizing Local Density for Density-Based Clustering
    Lin, Jun-Lin
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 24
  • [23] Density-Based Clustering for Adaptive Density Variation
    Qian, Li
    Plant, Claudia
    Boehm, Christian
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1282 - 1287
  • [24] Novel density-based and hierarchical density-based clustering algorithms for uncertain data
    Zhang, Xianchao
    Liu, Han
    Zhang, Xiaotong
    NEURAL NETWORKS, 2017, 93 : 240 - 255
  • [25] FULLY ADAPTIVE DENSITY-BASED CLUSTERING
    Steinwart, Ingo
    ANNALS OF STATISTICS, 2015, 43 (05): : 2132 - 2167
  • [26] Anytime parallel density-based clustering
    Mai, Son T.
    Assent, Ira
    Jacobsen, Jon
    Dieu, Martin Storgaard
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (04) : 1121 - 1176
  • [27] Fast density-based clustering algorithm
    Zhou, Shuigeng
    Zhou, Aoying
    Cao, Jing
    Hu, Yunfa
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2000, 37 (11): : 1287 - 1292
  • [28] The Framework of Relative Density-Based Clustering
    Cui, Zelin
    Shen, Hong
    PARALLEL ARCHITECTURE, ALGORITHM AND PROGRAMMING, PAAP 2017, 2017, 729 : 343 - 352
  • [29] Density-based clustering with differential privacy
    Wu, Fuyu
    Du, Mingjing
    Zhi, Qiang
    INFORMATION SCIENCES, 2024, 681
  • [30] A varied density-based clustering algorithm
    Fahim, Ahmed
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 66