Disease Prediction: Smart Disease Prediction System using Random Forest Algorithm

被引:6
|
作者
Swarupa, A. N. V. K. [1 ]
Sree, V. Heina [1 ]
Nookambika, S. [1 ]
Kishore, Y. Kiran Sai [1 ]
Teja, U. Ravi [1 ]
机构
[1] Sasi Inst Tech & Engn, Dept Comp Sci & Engg, Tadepalligudem, AP, India
关键词
random forest; disease prediction; HEALTH;
D O I
10.1109/ICISSGT52025.2021.00021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
People nowadays suffer from a variety of diseases as a result of their living habits and the state of the environment. As a result, predicting sickness at an early stage becomes a crucial task. A doctor's ability to establish accurate diagnosis solely on symptoms, on the other hand, is restricted. For the prevention and treatment of illness, an accurate and timely examination of any health-related problem is critical and challenging. In the case of a critical illness, the conventional method of diagnosis may not be adequate. There will be a huge requirement for Automated Disease Prediction System that will reduce these challenges. Developing a medical diagnosis system based on the Random Forest machine learning algorithm for disease prediction can aid in a more accurate diagnosis than the conventional way. The goal of constructing a classification system using a machine learning algorithm i.e Random Forest will substantially enable physicians in anticipating and detecting diseases at an early stage, greatly assisting in the resolution of health-related issues. For the analysis, a sample of 4920 patient records with 41 disorders was chosen. A total of 41 diseases made up the dependent variable. We enhanced 95 of the 132 independent variables (symptoms) that are closely related to illnesses. This paper illustrates a disease prediction system constructed using the Random Forest Machine Learning algorithm. Experiments were conducted with a standard symptoms dataset, and this model achieved 95 % classification accuracy. Machine learning and the Python programming language with the Tkinter Interface were used to create this disease prediction using Random Forest.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
  • [31] Accurate prediction of sugarcane yield using a random forest algorithm
    Yvette Everingham
    Justin Sexton
    Danielle Skocaj
    Geoff Inman-Bamber
    Agronomy for Sustainable Development, 2016, 36
  • [32] Prediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm
    Hao, Ming
    Li, Yan
    Wang, Yonghua
    Zhang, Shuwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2010, 11 (09) : 3413 - 3433
  • [33] Software maintainability prediction using an enhanced random forest algorithm
    Gupta, Shikha
    Chug, Anuradha
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (02): : 441 - 449
  • [34] Accurate prediction of sugarcane yield using a random forest algorithm
    Everingham, Yvette
    Sexton, Justin
    Skocaj, Danielle
    Inman-Bamber, Geoff
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2016, 36 (02)
  • [35] Prediction of Permeability Using Random Forest and Genetic Algorithm Model
    Wang, Junhui
    Yan, Wanzi
    Wan, Zhijun
    Wang, Yi
    Lv, Jiakun
    Zhou, Aiping
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 125 (03): : 1135 - 1157
  • [36] Improving the Efficiency of Heart Disease Prediction Using Novel Random Forest Classifier Over Support Vector Machine Algorithm
    Teja, P. Prasanna Sai
    Veeramani, T.
    CARDIOMETRY, 2022, (25): : 1468 - 1476
  • [37] Development and evaluation of a chronic kidney disease risk prediction model using random forest
    Mendapara, Krish
    FRONTIERS IN GENETICS, 2024, 15
  • [38] Comparison of Accuracy Rate in Prediction of Cardiovascular Disease using Random Forest with Logistic Regression
    Vishnuvardhan, Talluri
    Rama, A.
    CARDIOMETRY, 2022, (25): : 1526 - 1531
  • [39] Thermal analysis of Alzheimer's disease prediction using random forest classification model
    Parameswari, A.
    Kumar, K. Vinoth
    Gopinath, S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 815 - 821
  • [40] Classification and Prediction of Heart Disease using Novel Random Forest Algorithm by Comparing Logistic Regression for Obtaining Better Accuracy
    Poojitha, T.
    Mahaveerakannan, R.
    CARDIOMETRY, 2022, (25): : 1538 - 1545