Exergy Analysis: a Three-heat-source (Air, Wastewater & Energy Recycle) Hot Water System

被引:0
|
作者
Zhang, Zhongbin [1 ]
Huang, Hu [1 ]
Yang, Dongdong
Yu, Jia [1 ]
Chen, Zemin
机构
[1] Nanjing Normal Univ, Sch Dynam Engn, Nanjing, Peoples R China
关键词
Three-heat-source hot-water system; Exergy analysis; Thermal calculation; energy-saving; HEAT-PUMP SYSTEMS;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, comparison on air-source heat pump hot water system (ASHP), groundwater source heat pump hot water system (GSHP) and three-heat-source hot-water system (TSHS) were analyzed. The TSHS operates with ASHP running with valley electricity during night, waste heat of bath recycled during afternoon, and wastewater-source heat pump hot water system (WSHP) running with peak electricity. Based on the meteorological parameter condition in Nanjing, environmental temperatures for ASHP were chosen as 35 degrees C, 20 degrees C, 7 degrees C and -6 degrees C respectively, for GSHP, 18 degrees C, for WSHP, 30 degrees C. Other data for these three systems are made the same: fresh water for bath at 45 degrees C, condensing temperature t(k)=58 degrees C, evaporating temperature to be confirmed according to environmental temperature, superheat degree SH-10 degrees C, super cooling degree SC-5 degrees C, isentropic efficiency of compressor eta(i)=0.75. Based on the above condition, thermodynamic calculation and exergy analysis were made on these three systems. Results indicate that: work condition of ASHP varies considerably, while those of GSHP and WSHP are steady on the whole. Annual average exergy efficiency of ASHP (13.82%), which increases accordingly with the increase of high temperature runtime (17.92% maximum), is the weighted average of exergy efficiencies in four environments. The annual average exergy efficiency of GSHP is 15.36% and that of WSHP is 23.97%. The annual average exergy efficiency of TSHS, determined by the rate of the runtime of ASHP and WSHP, which should be calculated with the cost of valley and peak electricity considered, varies between 13.82% and 23.97%. As is shown in the conclusion, TSHS is well worth popularization for it runs at a steady course with low cost and high efficiency, especially for schools which do not need hot water system during the time at the highest and lowest temperature.
引用
收藏
页码:1514 / 1520
页数:7
相关论文
共 50 条
  • [41] Energy and exergy analysis of an Automobile Heat Pump system
    Direk, Mehmet
    Hosoz, Murat
    INTERNATIONAL JOURNAL OF EXERGY, 2008, 5 (5-6) : 556 - 566
  • [42] Energy and exergy analysis of thermoelectric heat pump system
    Kaushik, S. C.
    Manikandan, S.
    Hans, Ranjana
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 86 : 843 - 852
  • [43] Energy, exergy, economic, and environmental analysis of waste heat source heat pump industrial steam generation system
    Yin, Hang
    Ying, Shicheng
    Liu, Guangbin
    Yang, Qichao
    Zhao, Yuanyang
    Li, Liansheng
    ENERGY CONVERSION AND MANAGEMENT, 2025, 330
  • [44] Energy and exergy analysis of a ground source heat pump system with a slinky ground heat exchanger supported by nanofluid
    Kapicioglu, Abdullah
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (02) : 1455 - 1468
  • [45] Energy and exergy analysis of a ground source heat pump system with a slinky ground heat exchanger supported by nanofluid
    Abdullah Kapicioglu
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 1455 - 1468
  • [46] Modeling and Exergy Analysis of Seawater Source Heat pump System
    Shi, Zhigang
    Li, Xuquan
    Hu, Songtao
    MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 3152 - 3156
  • [47] Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage
    Shabgard, Hamidreza
    Song, Li
    Zhu, Weiwei
    ENERGY CONVERSION AND MANAGEMENT, 2018, 175 : 121 - 131
  • [48] An experimental investigation of the performance of an air-source heat pump hot-water system based on saltwater energy towers
    Chen, Wei
    Qu, Li-Juan
    Wang, Chao
    Yu, Zi-Tao
    Wang, Jing-Hua
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2012, 46 (08): : 1485 - 1489
  • [49] Research on Energy Savings of an Air-Source Heat Pump Hot Water System in a College Student's Dormitory Building
    Zeng, Yijiang
    Li, Shengyu
    Lu, Jun
    Li, Xiaodong
    Xing, Dingding
    Xiao, Jipan
    Zhang, Zhanhao
    Li, Leihong
    Shi, Xuhui
    SUSTAINABILITY, 2023, 15 (13)
  • [50] Simulation and experiment of a photovoltaic—air source heat pump system with thermal energy storage for heating and domestic hot water supply
    Junyu Da
    Ming Li
    Guoliang Li
    Yunfeng Wang
    Ying Zhang
    Building Simulation, 2023, 16 : 1897 - 1913