Discrete Wigner function for finite-dimensional systems

被引:55
|
作者
Luis, A
Perina, J
机构
[1] Palacky Univ, Opt Quant Lab, Olomouc 77207, Czech Republic
[2] Palacky Univ, Joint Lab Opt, Olomouc 77207, Czech Republic
[3] Acad Sci Czech Republ, Inst Phys, Olomouc, Czech Republic
来源
关键词
D O I
10.1088/0305-4470/31/5/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A phase-space approach to finite-dimensional systems is developed from basic principles. For a system describable by a Hilbert space of dimension d we define a one-to-one correspondence between operators and functions on a discrete and finite phase space with d(2) points valid for any dimension d. The properties fulfilled by this correspondence and its uniqueness are examined. This formalism is applied to the number difference and phase difference of a two-mode field. This case is compared with the marginal distribution for these variables arising from a two-mode Wigner function for number and phase.
引用
收藏
页码:1423 / 1441
页数:19
相关论文
共 50 条
  • [21] Quantum phase space points for Wigner functions in finite-dimensional spaces
    Luis, A
    PHYSICAL REVIEW A, 2004, 69 (05): : 052112 - 1
  • [22] Noise thresholds for higher-dimensional systems using the discrete Wigner function
    van Dam, Wim
    Howard, Mark
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [23] Finite-Dimensional Algebras and Standard Systems
    Jie Du
    Algebras and Representation Theory, 2003, 6 : 461 - 474
  • [24] Propensities in discrete phase spaces: Q function of a state in a finite-dimensional Hilbert space
    Opatrny, T.
    Buzek, V.
    Bajer, J.
    Drobny, G.
    Physical Review A - Atomic, Molecular, and Optical Physics, 1995, 52 (03): : 2419 - 2428
  • [25] Wigner distribution function for finite systems
    Atakishiyev, NM
    Chumakov, SM
    Wolf, KB
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6247 - 6261
  • [26] Finite-dimensional Discrete Random Structures and Bayesian Clustering
    Lijoi, Antonio
    Pruenster, Igor
    Rigon, Tommaso
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 929 - 941
  • [27] GAUSSIAN FINITE-DIMENSIONAL FILTERS IN DISCRETE-TIME
    FERRANTE, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8B (01): : 111 - 119
  • [28] FINITE-DIMENSIONAL PERTURBATIONS OF DISCRETE OPERATORS AND FORMULAS FOR TRACES
    SADOVNICHII, VA
    LYUBISHKIN, VA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (03) : 214 - 223
  • [29] Finite-dimensional control of linear discrete-time fractional-order systems
    Alessandretti, Andrea
    Pequito, Sergio
    Pappas, George J.
    Aguiar, A. Pedro
    AUTOMATICA, 2020, 115
  • [30] A discrete finite-dimensional phase space approach for the description of Fe8 magnetic clusters: Wigner and Husimi functions
    Silva, Evandro C.
    Galetti, Diogenes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (13)