Discretized configuration space on a tree;
Discrete Morse theory;
Farley-Sabalka gradient field;
Topological complexity;
D O I:
10.1007/s00454-021-00306-3
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Using the ordered analogue of Farley-Sabalka's discrete gradient field on the configuration space of a graph, we unravel a levelwise behavior of the generators of the pure braid group on a tree. This allows us to generalize Farber's equivariant description of the homotopy type of the configuration space on a tree on two particles. The results are applied to the calculation of all the higher topological complexities of ordered configuration spaces on trees on any number of particles.