Farley-Sabalka's Morse-Theory Model and the Higher Topological Complexity of Ordered Configuration Spaces on Trees

被引:1
|
作者
Aguilar-Guzman, Jorge [1 ]
Gonzalez, Jesus [1 ]
Hoekstra-Mendoza, Teresa [1 ]
机构
[1] Ctr Invest & Estudios Avanzados IPN, Dept Matemat, Av Inst Politecn Nacl 2508, Mexico City 07000, DF, Mexico
关键词
Discretized configuration space on a tree; Discrete Morse theory; Farley-Sabalka gradient field; Topological complexity;
D O I
10.1007/s00454-021-00306-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Using the ordered analogue of Farley-Sabalka's discrete gradient field on the configuration space of a graph, we unravel a levelwise behavior of the generators of the pure braid group on a tree. This allows us to generalize Farber's equivariant description of the homotopy type of the configuration space on a tree on two particles. The results are applied to the calculation of all the higher topological complexities of ordered configuration spaces on trees on any number of particles.
引用
收藏
页码:258 / 286
页数:29
相关论文
共 2 条