DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling

被引:25
|
作者
Lai, Yerui [1 ]
Zhao, Anjiang [2 ,3 ]
Tan, Minghong [1 ]
Yang, Mengliu [1 ,4 ]
Lin, Yao [2 ,3 ]
Li, Shengbing [1 ]
Song, Jinlin [5 ]
Zheng, Hongting [6 ]
Zhu, Zhiming [7 ]
Liu, Dongfang [1 ]
Liu, Chaohong [8 ]
Li, Ling [1 ]
Yang, Gangyi [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 2, Dept Endocrinol, Chongqing, Peoples R China
[2] Chongqing Med Univ, Key Lab Lab Med Diagnost, Minist Educ, Coll Lab Med, Chongqing, Peoples R China
[3] Chongqing Med Univ, Coll Lab Med, Dept Clin Biochem, Chongqing, Peoples R China
[4] Univ Queensland, Sch Biomed Sci, Brisbane, Qld, Australia
[5] Chongqing Med Univ, Coll Stomatol, Chongqing Key Lab Oral Dis & Biomed Sci, Chongqing, Peoples R China
[6] Third Mil Med Univ, Xinqiao Hosp, Dept Endocrinol, Chongqing, Peoples R China
[7] Third Mil Med Univ, Daping Hosp, Chongqing Inst Hypertens, Dept Hypertens & Endocrinol, Chongqing, Peoples R China
[8] Huazhong Univ Sci & Technol, Sch Basic Med, Dept Pathogen Biol, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
DOCK5; glucose metabolism; insulin resistance; mTOR pathway; TANDEM REPEATS VNTRS; INDUCED OBESITY; FATTY-ACIDS; RESISTANCE; INHIBITION; GLUCOSE; INFLAMMATION; GROWTH; IDENTIFICATION; ASSOCIATION;
D O I
10.15252/embr.201949473
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] AMPK Positively Regulates Neurotensin Secretion Through Inhibition of mTORC1 Signaling
    Song, Jun
    Li, Jing
    Weiss, Heidi L.
    Gao, Tianyan
    Townsend, Courtney M.
    Evers, B. Mark
    GASTROENTEROLOGY, 2014, 146 (05) : S87 - S87
  • [32] E2F1 Regulates Cellular Growth by mTORC1 Signaling
    Real, Sebastian
    Meo-Evoli, Nathalie
    Espada, Lilia
    Tauler, Albert
    PLOS ONE, 2011, 6 (01):
  • [33] Zoledronic acid regulates osteoblast differentiation via the mTORC1 signaling pathway
    Gao, Feng
    Liu, Yuanhang
    Liu, Mingfa
    Zhu, Lixin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (05): : 4585 - 4594
  • [34] Nutrient Sensor mTORC1 Regulates Insulin Secretion by Modulating β-Cell Autophagy
    Israeli, Tal
    Riahi, Yael
    Garzon, Perla
    Louzada, Ruy Andrade
    Werneck-de-Castro, Joao Pedro
    Blandino-Rosano, Manuel
    Yeroslaviz-Stolper, Roni
    Kadosh, Liat
    Tornovsky-Babeay, Sharona
    Hacker, Gilad
    Israeli, Nitzan
    Agmon, Orly
    Tirosh, Boaz
    Cerasi, Erol
    Bernal-Mizrachi, Ernesto
    Leibowitz, Gil
    DIABETES, 2022, 71 (03) : 453 - 469
  • [35] Rapamycin Regulates Akt and ERK Phosphorylation Through mTORC1 and mTORC2 Signaling Pathways
    Chen, Xian-Guo
    Liu, Fei
    Song, Xing-Fu
    Wang, Zhi-Hua
    Dong, Zi-Qiang
    Hu, Zhi-Quan
    Lan, Ru-Zhu
    Guan, Wei
    Zhou, Tian-Gui
    Xu, Xiao-Ming
    Lei, Hong
    Ye, Zhang-Qun
    Peng, E-Jun
    Du, Li-Huan
    Zhuang, Qian-Yuan
    MOLECULAR CARCINOGENESIS, 2010, 49 (06) : 603 - 610
  • [36] Vesicular trafficking controlled by TUFT1-RABGAP1 regulates mTORC1 signaling
    Kawasaki, Natsumi
    Isogaya, Kazunobu
    Dan, Shingo
    Yamori, Takao
    Takano, Hiroshi
    Yao, Ryoji
    Taguchi, Luna
    Morikawa, Masato
    Noda, Tetsuo
    Ehata, Shogo
    Miyazono, Kohei
    Koinuma, Daizo
    CANCER SCIENCE, 2018, 109 : 474 - 474
  • [37] Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling
    Warren, Eleanor C.
    Dooves, Stephanie
    Lugara, Eleonora
    Damstra-Oddy, Joseph
    Schaf, Judith
    Heine, Vivi M.
    Walker, Mathew C.
    Williams, Robin S. B.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (38) : 23617 - 23625
  • [38] GRK5 Regulates Social Behavior Via Suppression of mTORC1 Signaling in Medial Prefrontal Cortex
    Niu, Bing
    Liu, Peipei
    Shen, Minjie
    Liu, Cao
    Wang, Li
    Wang, Feifei
    Ma, Lan
    CEREBRAL CORTEX, 2018, 28 (02) : 421 - 432
  • [39] Liver ALKBH5 regulates glucose and lipid homeostasis independently through GCGR and mTORC1 signaling
    Ding, Kaixin
    Zhang, Zhipeng
    Han, Zhengbin
    Shi, Lei
    Li, Xinzhi
    Liu, Yutong
    Li, Zhenzhi
    Zhao, Chongchong
    Cui, Yifeng
    Zhou, Liying
    Xu, Bolin
    Zhou, Wenjing
    Zhao, Yikui
    Wang, Zhiqiang
    Huang, He
    Xie, Liwei
    Chen, Xiao-wei
    Chen, Zheng
    SCIENCE, 2025, 387 (6737)
  • [40] Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1
    Koh, Ara
    Molinaro, Antonio
    Stahlman, Marcus
    Khan, Muhammad Tanweer
    Schmidt, Caroline
    Manneras-Holm, Louise
    Wu, Hao
    Carreras, Alba
    Jeong, Heeyoon
    Olofsson, Louise E.
    Bergh, Per-Olof
    Gerdes, Victor
    Hartstra, Annick
    de Brauw, Maurits
    Perkins, Rosie
    Nieuwdorp, Max
    Bergstrom, Goran
    Backhed, Fredrik
    CELL, 2018, 175 (04) : 947 - +