Bandgap engineering of Cd1-xZnxTe1-ySey(0 < x <0.27, 0 < y < 0.026)

被引:14
|
作者
Park, Beomjun [1 ,2 ]
Kim, Yonghoon [1 ,2 ]
Seo, Jiwon [1 ,2 ]
Byun, Jangwon [1 ,2 ]
Dedic, V. [3 ]
Franc, J. [3 ]
Bolotnikov, A. E. [4 ]
James, Ralph B. [5 ]
Kim, Kihyun [6 ]
机构
[1] Korea Univ, Dept Hlth & Safety Convergence Sci, Seoul 02841, South Korea
[2] Korea Univ, Interdisciplinary Program Precis Publ Hlth, Seoul 02841, South Korea
[3] Charles Univ Prague, Inst Phys, Ke Karlovu 5, Prague 12116, Czech Republic
[4] Brookhaven Natl Lab, Upton, NY 11973 USA
[5] Savannah River Natl Lab, Aiken, SC 29808 USA
[6] Korea Univ, Sch Hlth & Environm Sci, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Bandgap engineering; CdZnTeSe; Pulse height spectra; Energy resolution enhancement; Defects; CDTE; RAY; CD1-XZN(X)TE; GROWTH; ENERGY; CDZNTE; GAP;
D O I
10.1016/j.nima.2022.166836
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
CdZnTe (CZT) detectors with more than 10% zinc content did not show any remarkable improvement in the detector performance due to the additional defects introduced by the higher zinc content. However, recent research showed that the formation of defects was suppressed effectively by adding a small amount of selenium (at. 2%) in CZT. On this basis, we attempted to enhance the detector performance through the bandgap engineering by increasing the zinc content up to 25%, while adding 2% of selenium. Multiple CdZnTeSe (CZTS) ingots with Zn = 10, 12.5, 15, and 20%, while keeping the Se contents at 2%, were grown by the Bridgman method. The bandgap of CZTS for the different Zn and Se contents was analyzed and then introduced modified equation for predicting more accurately the bandgap of other alloy compositions. Also, the crystallinity of CZTS was evaluated by photoluminescence measurements. The pulse height spectra for Am-241 and Co-57 sources were used to evaluate the detector performance for the CZTS samples.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Model Describing the Band Gap Energy of the Strained In x Ga1-x N y Sb z As1-y-z Alloy (0 < x 0.5, 0 < y ≤ 0.05, 0 < z ≤ 0.1)
    Zhao, Chuan-Zhen
    Fu, Qiang
    Wei, Tong
    Wang, Sha-Sha
    Lu, Ke-Qing
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (03) : 1546 - 1551
  • [22] Concerning the energy class εp for 0 < p < 1
    Ahag, Per
    Czyz, Rafal
    Hiep, Pham Hoang
    ANNALES POLONICI MATHEMATICI, 2007, 91 (2-3) : 119 - 130
  • [23] Embedding subspaces of Lp into lpN, 0 < p < 1
    Schechtman, G
    Zvavitch, A
    MATHEMATISCHE NACHRICHTEN, 2001, 227 : 133 - 142
  • [24] The Lp Minkowski problem for polytopes for 0 < p < 1
    Zhu, Guangxian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (04) : 1070 - 1094
  • [25] The MUNICS project:: Galaxy assembly at 0 < z < 1
    Drory, N
    Bender, R
    Feulner, G
    Hill, GJ
    Hopp, U
    Maraston, C
    Snigula, J
    Multiwavelength Mapping of Galaxy Formation and Evolution, 2005, : 251 - 256
  • [26] COEFFICIENT ESTIMATES FOR Hp SPACES WITH 0 < p < 1
    Brevig, Ole Fredrik
    Saksman, Eero
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (09) : 3911 - 3924
  • [27] On the Lp torsional Minkowski problem for 0 < p < 1
    Hu, Jinrong
    Liu, Jiaqian
    ADVANCES IN APPLIED MATHEMATICS, 2021, 128
  • [28] The Lp-mixed quermassintegrals for 0 < p < 1
    Zhao, Chang-Jian
    Bencze, Mihaly
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 519 - 528
  • [29] Electroresistance effect in La1-xCaxMnO3 (0 < x < 1) ceramics
    Deng, H.
    Yang, C. P.
    Zhou, Z. H.
    Wang, H.
    Baerner, K.
    Medvedeva, I. V.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (12) : 1660 - 1663
  • [30] Fabrication of new superconducting materials, CaxK1-xCy (0 < x < 1)
    Nguyen, Huyen T. L.
    Nishiyama, Saki
    Izumi, Masanari
    Zheng, Lu
    Miao, Xiao
    Sakai, Yusuke
    Goto, Hidenori
    Hirao, Naohisa
    Ohishi, Yasuo
    Kagayama, Tomoko
    Shimizu, Katsuya
    Kubozono, Yoshihiro
    CARBON, 2016, 100 : 641 - 646