Particle focusing by 3D inertial microfluidics

被引:86
|
作者
Paie, Petra [1 ,2 ]
Bragheri, Francesca [1 ,2 ]
Di Carlo, Dino [3 ,4 ]
Osellame, Roberto [1 ,2 ]
机构
[1] CNR, IFN, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Dept Mech Engn, Dept Bioengn, 420 Westwood Plaza,5121 Engn V, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, 420 Westwood Plaza,5121 Engn V, Los Angeles, CA 90095 USA
来源
关键词
3D fluidic network; 3D particle focusing; Dean flow; inertial microfluidics; FLOW-CYTOMETRY;
D O I
10.1038/micronano.2017.27
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional (3D) particle focusing in microfluidics is a fundamental capability with a wide range of applications, such as on-chip flow cytometry, where high-throughput analysis at the single-cell level is performed. Currently, 3D focusing is achieved mainly in devices with complex layouts, additional sheath fluids, and complex pumping systems. In this work, we present a compact microfluidic device capable of 3D particle focusing at high flow rates and with a small footprint, without the requirement of external fields or lateral sheath flows, but using only a single-inlet, single-outlet microfluidic sequence of straight channels and tightly curving vertical loops. This device exploits inertial fluidic effects that occur in a laminar regime at sufficiently high flow rates, manipulating the particle positions by the combination of inertial lift forces and Dean drag forces. The device is fabricated by femtosecond laser irradiation followed by chemical etching, which is a simple two-step process enabling the creation of 3D microfluidic networks in fused silica glass substrates. The use of tightly curving three-dimensional microfluidic loops produces strong Dean drag forces along the whole loop but also induces an asymmetric Dean flow decay in the subsequent straight channel, thus producing rapid cross-sectional mixing flows that assist with 3D particle focusing. The use of out-of-plane loops favors a compact parallelization of multiple focusing channels, allowing one to process large amounts of samples. In addition, the low fluidic resistance of the channel network is compatible with vacuum driven flows. The resulting device is quite interesting for high-throughput on-chip flow cytometry.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High inertial microfluidics for droplet generation in a flow-focusing geometry
    Mohammad Mastiani
    Seokju Seo
    Benjamin Riou
    Myeongsub Kim
    Biomedical Microdevices, 2019, 21
  • [42] High inertial microfluidics for droplet generation in a flow-focusing geometry
    Mastiani, Mohammad
    Seo, Seokju
    Riou, Benjamin
    Kim, Myeongsub
    BIOMEDICAL MICRODEVICES, 2019, 21 (03)
  • [43] Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers
    Yin, Pengju
    Zhao, Lei
    Chen, Zezhou
    Jiao, Zhiqiang
    Shi, Hongyan
    Hu, Bo
    Yuan, Shifang
    Tian, Jie
    SOFT MATTER, 2020, 16 (12) : 3096 - 3105
  • [44] Continuous 3D particle focusing in a microchannel with curved and symmetric sharp corner structures
    Fan, Liang-Liang
    He, Xu-Kun
    Han, Yu
    Zhe, Jiang
    Zhao, Liang
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (03)
  • [45] Numerical investigation of heterogeneous soft particle pairs in inertial microfluidics
    Owen, Benjamin
    Thota, Krishnaveni
    Kruger, Timm
    SOFT MATTER, 2024, 20 (04) : 887 - 899
  • [46] Active control of particle position by boundary slip in inertial microfluidics
    Xuan, Chengliang
    Liang, Weiyin
    He, Bing
    Wen, Binghai
    PHYSICAL REVIEW FLUIDS, 2022, 7 (06)
  • [47] Microfluidics-enabled functional 3D printing
    Mea, H.
    Wan, J.
    BIOMICROFLUIDICS, 2022, 16 (02)
  • [48] Microfluidics as a Platform for the Analysis of 3D Printing Problems
    Mendes, Rui
    Fanzio, Paola
    Campo-Deano, Laura
    Galindo-Rosales, Francisco J.
    MATERIALS, 2019, 12 (17)
  • [49] 3D PRINTING OF MICROFLUIDICS FOR POINT OF CARE DIAGNOSIS
    Sibbitt, John P.
    He, Mei
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 4, 2017,
  • [50] 3D Printed Tooling for Injection Molded Microfluidics
    Convery, Neil
    Samardzhieva, Iliyana
    Stormonth-Darling, John Moir
    Harrison, Sean
    Sullivan, Gareth J.
    Gadegaard, Nikolaj
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (11)