A Jacobi-Davidson type method for a right definite two-parameter eigenvalue problem

被引:21
|
作者
Hochstenbach, ME
Plestenjak, B
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] Univ Ljubljana, IMFM, TCS, SI-1000 Ljubljana, Slovenia
关键词
right definite two-parameter eigenvalue problem; subspace method; Jacobi-Davidson method; correction equation; Ritz pair; inexact Newton method;
D O I
10.1137/S0895479801395264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new numerical iterative method for computing selected eigenpairs of a right definite two-parameter eigenvalue problem. The method works even without good initial approximations and is able to tackle large problems that are too expensive for existing methods. The new method is similar to the Jacobi-Davidson method for the eigenvalue problem. In each step, we first compute Ritz pairs of a small projected right definite two-parameter eigenvalue problem and then expand the search spaces using approximate solutions of appropriate correction equations. We present two alternatives for the correction equations, introduce a selection technique that makes it possible to compute more than one eigenpair, and give some numerical results.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [31] Alternative correction equations in the Jacobi-Davidson method
    Genseberger, M
    Sleijpen, GLG
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (03) : 235 - 253
  • [32] A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems
    Voss, H.
    COMPUTERS & STRUCTURES, 2007, 85 (17-18) : 1284 - 1292
  • [33] INCREASING THE PERFORMANCE OF THE JACOBI-DAVIDSON METHOD BY BLOCKING
    Roehrig-Zoellner, Melven
    Thies, Jonas
    Kreutzer, Moritz
    Alvermann, Andreas
    Pieper, Andreas
    Basermann, Achim
    Hager, Georg
    Wellein, Gerhard
    Fehske, Holger
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : C697 - C722
  • [34] A Jacobi-Davidson type method with a correction equation tailored for integral operators
    Vasconcelos, Paulo B.
    d'Almeida, Filomena D.
    Roman, Jose E.
    NUMERICAL ALGORITHMS, 2013, 64 (01) : 85 - 103
  • [35] THE NUMERIC RANGE OF THE TWO-PARAMETER EIGENVALUE PROBLEM
    Mammadov, Eldar Sh.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2018, : 214 - 216
  • [36] On the singular two-parameter eigenvalue problem II
    Kosir, Tomaz
    Plestenjak, Bor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 : 433 - 451
  • [37] On linearizations of the quadratic two-parameter eigenvalue problem
    Hochstenbach, Michiel E.
    Muhic, Andrej
    Plestenjak, Bor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) : 2725 - 2743
  • [38] A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems
    Huang, Tsung-Ming
    Hwang, Feng-Nan
    Lai, Sheng-Hong
    Wang, Weichung
    Wei, Zih-Hao
    COMPUTERS & FLUIDS, 2011, 45 (01) : 207 - 214
  • [39] Parallel block Jacobi-Davidson method for solving large generalized eigenvalue problems and it's application
    Wang, Shun-Xu
    Dai, Hua
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2008, 25 (04): : 428 - 433
  • [40] Application of the Jacobi-Davidson method to spectral calculations in magnetohydrodynamics
    Beliën, AJC
    van der Holst, B
    Nool, M
    van der Ploeg, A
    Goedbloed, JP
    HIGH PERFORMANCE COMPUTING AND NETWORKING, PROCEEDINGS, 2000, 1823 : 119 - 126