DOMAINS OF HOLOMORPHY FOR IRREDUCIBLE ADMISSIBLE UNIFORMLY BOUNDED BANACH REPRESENTATIONS OF SIMPLE LIE GROUPS

被引:1
|
作者
Liu, G. [1 ]
Parthasarathy, A. [2 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, 3 Rue Augustin Fresnel,BP 45112, F-57073 Metz 03, France
[2] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词
HARISH-CHANDRA MODULES; HARMONIC-ANALYSIS; EXTENSIONS; SPACES;
D O I
10.1007/s00031-017-9468-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we address a question raised by B. Krotz on the classification of G-invariant domains of holomorphy for irreducible admissible Banach representations of connected non-compact simple real linear Lie groups G. When G is not of Hermitian type, we give a complete description of such G-invariant domains for irreducible admissible uniformly bounded representations on reflexive Banach spaces and, in particular, for all irreducible uniformly bounded Hilbert representations. When the group G is Hermitian, we determine such G-invariant domains only when the representations considered are highest or lowest weight representations.
引用
收藏
页码:755 / 764
页数:10
相关论文
共 50 条