A steerable pyramid autoencoder based framework for anomaly frame detection of water pipeline CCTV inspection

被引:9
|
作者
Jiao, Yutong [1 ]
Rayhana, Rakiba [1 ]
Bin, Junchi [1 ]
Liu, Zheng [1 ]
Wu, Angie [2 ]
Kong, Xiangjie [2 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC, Canada
[2] Pure Technol, Mississauga, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Anomaly frame detection; Water pipeline; CCTV inspection; Autoencoder; Steerable pyramid; Deep learning; Classification;
D O I
10.1016/j.measurement.2021.109020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video during the office-based survey and can get fatigue easily. An automated process can release the inspector?s work load and ensure the consistent quality of the survey. However, a fully automated survey of varied structural discontinuities still remains as a challenge. This study aims to first identify the anomaly frames of the CCTV video, which contain the major anomalies captured from the internal surface of the pipe. Thus, the inspector can focus more on these anomaly frames. In this paper, an anomaly frame detection framework based on steerable pyramid autoencoder (SPAE) is proposed. The SPAE can generate discriminative representations to be used in the prediction. Both the parameter optimization and comparative studies for the proposed SPAE were carried out in this research. The experimental results demonstrate that this novel SPAE algorithm can achieve 0.984 accuracy and 0.984 F1-score, which outperforms other state-of-the-art methods selected for comparison. Thus, the proposed framework can significantly improve the accuracy and efficiency for anomaly frame detection, which will highly facilitate the pipeline condition assessment through the CCTV inspection.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Anomaly Detection in Orthogonal Metal Cutting based on Autoencoder Method
    Maxime, Dawoua Kaoutoing
    Raymond, Hotta Ngouna
    Olivier, Pantale
    Tibi, Beda
    2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2018, : 485 - 493
  • [42] VESC: a new variational autoencoder based model for anomaly detection
    Chunkai Zhang
    Xinyu Wang
    Jiahua Zhang
    Shaocong Li
    Hanyu Zhang
    Chuanyi Liu
    Peiyi Han
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 683 - 696
  • [43] Autoencoder-based Anomaly Detection in Smart Farming Ecosystem
    Adkisson, Mary
    Kimmell, Jeffrey C.
    Gupta, Maanak
    Abdelsalam, Mahmoud
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3390 - 3399
  • [44] Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly Detection
    Purohit, Harsh
    Endo, Takashi
    Yamamoto, Masaaki
    Kawaguchi, Yohei
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 274 - 278
  • [45] A Kalman Variational Autoencoder Model Assisted by Odometric Clustering for Video Frame Prediction and Anomaly Detection
    Slavic, Giulia
    Alemaw, Abrham Shiferaw
    Marcenaro, Lucio
    Gomez, David Martin
    Regazzoni, Carlo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 415 - 429
  • [46] Research of anomaly detection based on dynamic anomaly detection enhancement framework
    Zhu, Xiaoxun
    Weng, Songwei
    Wang, Yu
    Yang, Zhen
    Cao, Jingyuan
    Gao, Xiaoxia
    Dong, Lijiang
    Lin, Xiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [47] AUTOENCODER IN AUTOENCODER NETWORK BASED ON LOW-RANK EMBEDDING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Cao, Weinan
    Zhang, Hongyan
    He, Wei
    Chen, Hongyu
    Tat, Ewe Hong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3263 - 3266
  • [48] Towards an Interpretable Autoencoder: A Decision-Tree-Based Autoencoder and its Application in Anomaly Detection
    Aguilar, Diana Laura
    Medina-Perez, Miguel Angel
    Loyola-Gonzalez, Octavio
    Choo, Kim-Kwang Raymond
    Bucheli-Susarrey, Edoardo
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (02) : 1048 - 1059
  • [49] Anomaly Detection for Vision-Based Railway Inspection
    Gasparini, Riccardo
    Pini, Stefano
    Borghi, Guido
    Scaglione, Giuseppe
    Calderara, Simone
    Fedeli, Eugenio
    Cucchiara, Rita
    DEPENDABLE COMPUTING, EDCC 2020 WORKSHOPS, 2020, 1279 : 56 - 67
  • [50] Fuzzy Controller-empowered Autoencoder Framework for anomaly detection in Cyber Physical Systems
    Gupta, Koyel Datta
    Singhal, Kartik
    Sharma, Deepak Kumar
    Sharma, Nonita
    Malebary, Sharaf
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108