Correntropy Supervised Non-negative Matrix Factorization

被引:0
|
作者
Zhang, Wenju [1 ]
Guan, Naiyang [1 ]
Tao, Dacheng [2 ]
Mao, Bin [3 ]
Huang, Xuhui [4 ]
Luo, Zhigang [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Sci & Technol Parallel & Distributed Proc Lab, Changsha 410073, Hunan, Peoples R China
[2] Univ Technol Sydney, FElT, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[3] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[4] Natl Univ Def Technol, Coll Comp, Dept Comp Sci & Technol, Changsha 410073, Hunan, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-negative matrix factorization (NMF) is a powerful dimension reduction method and has been widely used in many pattern recognition and computer vision problems. However, conventional NMF methods are neither robust enough as their loss functions are sensitive to outliers, nor discriminative because they completely ignore labels in a dataset. In this paper, we proposed a correntropy supervised NMF (CSNMF) to simultaneously overcome aforementioned deficiencies. In particular, CSNMF maximizes the correntropy between the data matrix and its reconstruction in low-dimensional space to inhibit outliers during learning the subspace, and narrows the minimizes the distances between coefficients of any two samples with the same class labels to enhance the subsequent classification performance. To solve CSNMF, we developed a multiplicative update rules and theoretically proved its convergence. Experimental results on popular face image datasets verify the effectiveness of CSNMF comparing with NMF, its supervised variants, and its robustified variants.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Semi-Supervised Non-Negative Matrix Factorization With Dissimilarity and Similarity Regularization
    Jia, Yuheng
    Kwong, Sam
    Hou, Junhui
    Wu, Wenhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (07) : 2510 - 2521
  • [42] Robust Semi-Supervised Non-Negative Matrix Factorization With Structured Normalization
    Wang, Liujing
    Guan, Naiyang
    Shi, Dianxi
    Fan, Zunlin
    Su, Longfei
    IEEE ACCESS, 2019, 7 : 133996 - 134013
  • [43] Discriminative semi-supervised non-negative matrix factorization for data clustering
    Xing, Zhiwei
    Wen, Meng
    Peng, Jigen
    Feng, Jinqian
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [44] A Unified Non-Negative Matrix Factorization Framework for Semi Supervised Learning on Graphs
    Mitra, Anasua
    Vijayan, Priyesh
    Parthasarathy, Srinivasan
    Ravindran, Balaraman
    PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM), 2020, : 487 - 495
  • [45] Robust Non-negative Matrix Factorization with Supervised Graph Embedding for Image Classification
    Wan, Minghua
    Gu, Weiyu
    Yang, Guowei
    Tan, Hai
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2025, 19 (03):
  • [46] A Fast Optimized Semi-Supervised Non-Negative Matrix Factorization Algorithm
    Lopes, Noel
    Ribeiro, Bernardete
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2495 - 2500
  • [47] Supervised non-negative matrix factorization based latent semantic image indexing
    梁栋
    杨杰
    常宇畴
    Chinese Optics Letters, 2006, (05) : 272 - 274
  • [48] Stopping Criteria for Non-Negative Matrix Factorization Based Supervised and Semi-Supervised Source Separation
    Germain, Franois G.
    Mysore, Gautham J.
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (10) : 1284 - 1288
  • [49] Non-negative matrix factorization for target recognition
    Long, Hong-Lin
    Pi, Yi-Ming
    Cao, Zong-Jie
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (06): : 1425 - 1429
  • [50] Semi-supervised non-negative matrix factorization for image clustering with graph Laplacian
    He, Yangcheng
    Lu, Hongtao
    Xie, Saining
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (02) : 1441 - 1463