A clustering neural network model of insect olfaction

被引:0
|
作者
Pehlevan, Cengiz [1 ]
Genkin, Alexander [2 ]
Chklovskii, Dmitri B. [1 ,2 ]
机构
[1] Flatiron Inst, Ctr Computat Biol, New York, NY 10010 USA
[2] NYU Langone Med Ctr, New York, NY USA
关键词
HEBBIAN/ANTI-HEBBIAN NETWORK; MUSHROOM BODY; SPARSE; REPRESENTATIONS; INFORMATION; SYNAPSES; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key step in insect olfaction is the transformation of a dense representation of odors in a small population of neurons - projection neurons (PNs) of the antennal lobe - into a sparse representation in a much larger population of neurons Kenyon cells (KCs) of the mushroom body. What computational purpose does this transformation serve? We propose that the PN-KC network implements an online clustering algorithm which we derive from the k-means cost function. The vector of PN-KC synaptic weights converging onto a given KC represents the corresponding cluster centroid. KC activities represent attribution indices, i.e. the degree to which a given odor presentation is attributed to each cluster. Remarkably, such clustering view of the PN-KC circuit naturally accounts for several of its salient features. First, attribution indices are nonnegative thus rationalizing rectification in KCs. Second, the constraint on the total sum of attribution indices for each presentation is enforced by a Lagrange multiplier identified with the activity of a single inhibitory interneuron reciprocally connected with KCs. Third, the soft-clustering version of our algorithm reproduces observed sparsity and overcompleteness of the KC representation which may optimize supervised classification downstream.
引用
收藏
页码:593 / 600
页数:8
相关论文
共 50 条
  • [21] PERIPHERAL PROCESSES IN INSECT OLFACTION
    STENGL, M
    HATT, H
    BREER, H
    ANNUAL REVIEW OF PHYSIOLOGY, 1992, 54 : 665 - 681
  • [22] Molecular studies in insect olfaction
    Field, LM
    Pickett, JA
    Wadhams, LJ
    INSECT MOLECULAR BIOLOGY, 2000, 9 (06) : 545 - 551
  • [23] Temporal precision in insect olfaction
    Szyszka, Paul
    Egea-Weiss, Alexander
    Mohammed, Yunusa Garba
    Renner, Alpha
    Sehdev, Aarti
    CHEMICAL SENSES, 2018, 43 (03) : E14 - E14
  • [24] Comparative genomics of insect olfaction
    Benton, R.
    Vannice, K.
    Vosshall, L. B.
    CHEMICAL SENSES, 2006, 31 (08) : E88 - E88
  • [25] Clustering and neural network approaches
    Bock, HH
    CLASSIFICATION IN THE INFORMATION AGE, 1999, : 42 - 57
  • [26] Clustering: A neural network approach
    Du, K. -L.
    NEURAL NETWORKS, 2010, 23 (01) : 89 - 107
  • [27] MLVQ clustering neural network
    Yan, De-Qin
    Chi, Zhong-Xian
    Wang, Jun
    Zidonghua Xuebao/Acta Automatica Sinica, 2004, 30 (04): : 608 - 612
  • [28] Subtractive Clustering Based RBF Neural Network Model for Outlier Detection
    Yang, Peng
    Zhu, Qingsheng
    Zhong, Xun
    JOURNAL OF COMPUTERS, 2009, 4 (08) : 755 - 762
  • [29] Influence of Cluster Center Selection on Clustering by Hybrid Neural Network Model
    Krakovsky, R.
    Forgac, R.
    Mokris, I.
    2012 4TH IEEE INTERNATIONAL SYMPOSIUM ON LOGISTICS AND INDUSTRIAL INFORMATICS (LINDI), 2012, : 233 - 237
  • [30] A Hybrid FCM Clustering-Neural Network Model for Intrusion Detection
    Jawhar, Muna M. T.
    Mehrotra, Monica
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 3519 - +