Holes in Generalized Reed-Muller Codes

被引:1
|
作者
Lovett, Shachar [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
Polynomials; Reed-Muller codes; regularity; weight distribution;
D O I
10.1109/TIT.2010.2046206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The possible relative weights of codewords of Generalized Reed-Muller codes are studied. Let RMq(r, m) denote the code of polynomials over the finite field F-q in m variables of total degree at most r. The relative weight of a codeword f is an element of RMq(r, m) is the fraction of nonzero entries in f. The possible relative weights are studied, when the field F-q and the degree r are fixed, and the number of variables m tends to infinity. It is proved that the set of possible weights is sparse-for any a which is not rational of the form alpha = l/q(k), there exists some epsilon > 0 such that no weights fall in the interval (alpha - epsilon, alpha + epsilon). This demonstrates a new property of the weight distribution of Generalized Reed-Muller codes.
引用
收藏
页码:2583 / 2586
页数:4
相关论文
共 50 条
  • [1] GENERALIZED REED-MULLER CODES
    KASAMI, T
    LIN, S
    PETERSON, WW
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1968, 51 (03): : 96 - &
  • [2] GENERALIZED REED-MULLER CODES
    WEISS, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 213 - &
  • [3] ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES
    DELSARTE, P
    GOETHALS, JM
    MACWILLI.FJ
    INFORMATION AND CONTROL, 1970, 16 (05): : 403 - &
  • [4] Complete Complementary Codes and Generalized Reed-Muller Codes
    Chen, Chao-Yu
    Wang, Chung-Hsuan
    Chao, Chi-Chao
    IEEE COMMUNICATIONS LETTERS, 2008, 12 (11) : 849 - 851
  • [5] On the second weight of generalized Reed-Muller codes
    Olav Geil
    Designs, Codes and Cryptography, 2008, 48 : 323 - 330
  • [6] THE AUTOMORPHISM GROUP OF GENERALIZED REED-MULLER CODES
    BERGER, T
    CHARPIN, P
    DISCRETE MATHEMATICS, 1993, 117 (1-3) : 1 - 17
  • [7] On the Generalized Covering Radii of Reed-Muller Codes
    Elimelech, Dor
    Wei, Hengjia
    Schwartz, Moshe
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4378 - 4391
  • [8] On the generalized modal Θ-valent Reed-Muller codes
    Armand, Tsimi Jean
    Cedric, Pemha Binyam Gabriel
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (08): : 1885 - 1906
  • [9] On the second weight of generalized Reed-Muller codes
    Geil, Olav
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (03) : 323 - 330
  • [10] Generalized Reed-Muller codes over Zq
    Bhaintwal, Maheshanand
    Wasan, Siri Krishan
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (02) : 149 - 166