Adaptive Boundary Observer Design for coupled ODEs-Hyperbolic PDEs systems

被引:2
|
作者
Ghousein, Mohammad [1 ]
Witrant, Emmanuel [1 ]
机构
[1] Univ Grenoble Alpes, GIPSA Lab, 11 Rue Math, F-38400 St Martin Dheres, France
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Hyperbolic partial differential equations; Adaptive boundary Observers; Boundary Control;
D O I
10.1016/j.ifacol.2020.12.1359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the state estimation of n(xi) hyperbolic PDEs coupled with n(X) ordinary differential equations at the boundary. The hyperbolic system is linear and propagates in the positive x-axis direction. The ODE system is linear time varying (LTV) and includes a set of no unknown constant parameters, which are to be estimated simultaneously with the PDE and the ODE states using boundary sensing. We design a Luenberger state observer, and our method is mainly based on the decoupling of the PDE estimation error states from that of the ODEs via swapping design. We then derive the observer gains through the Lyapunov analysis of the decoupled system. Furthermore, we give sufficient conditions of the exponential convergence of the adaptive observer through differential Lyapunov inequalities (DLIs) and we illustrate the theoretical results by numerical simulations. Copyright (C) 2020 The Authors.
引用
收藏
页码:7605 / 7610
页数:6
相关论文
共 50 条
  • [41] Adaptive stabilization for ODE systems coupled with parabolic PDES
    Jian Li
    Yungang Liu
    Journal of Systems Science and Complexity, 2016, 29 : 959 - 977
  • [42] Hyperbolic observer design for a class of nonlinear systems
    Parvizian, Majid
    Khandani, Khosro
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [43] Adaptive Observer Design for Heat PDEs With Sensor Delay and Parameter Uncertainties
    Ammari, O.
    Giri, F.
    Krstic, M.
    Benabdelhadi, A.
    Chaoui, F. Z.
    El Majdoub, K.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8962 - 8969
  • [44] Adaptive observer design for wave PDEs with nonlinear dynamics and parameter uncertainty
    Benabdelhadi, Abdeljalil
    Giri, Fouad
    Ahmed-Ali, Tarek
    Krstic, Miroslav
    El Fadil, Hassan
    Chaoui, Fatima-Zahra
    AUTOMATICA, 2021, 123
  • [45] Polynomial Fuzzy Observer-Based Feedback Control for Nonlinear Hyperbolic PDEs Systems
    Tsai, Shun-Hung
    Lee, Wen-Hsin
    Tanaka, Kazuo
    Chen, Ying-Jen
    Lam, Hak-Keung
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (09) : 5257 - 5269
  • [46] Boundary observer design for a class of semi-linear hyperbolic PDE systems with recycle loop
    Xu, Xiaodong
    Dubljevic, Stevan
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (04) : 1089 - 1101
  • [47] Model reference adaptive control of n+1 coupled linear hyperbolic PDEs
    Anfinsen, Henrik
    Aamo, Ole Morten
    SYSTEMS & CONTROL LETTERS, 2017, 109 : 1 - 11
  • [48] Model Reference Adaptive Control of 2 x 2 Coupled Linear Hyperbolic PDEs
    Anfinsen, Henrik
    Aamo, Ole Morten
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) : 2405 - 2420
  • [49] Adaptive State Feedback Stabilization of n+1 Coupled Linear Hyperbolic PDEs
    Anfinsen, Henrik
    Aamo, Ole Morten
    2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2017, : 901 - 908
  • [50] Anticollocated Backstepping Observer Design for a Class of Coupled Reaction-Diffusion PDEs
    Baccoli, Antonello
    Pisano, Alessandro
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2015, 2015