A partition approach to Vizing's conjecture

被引:0
|
作者
Chen, GT
Piotrowski, W
Shreve, W
机构
[1] UNIV WISCONSIN SUPER,DEPT MATH & COMP SCI,SUPERIOR,WI 54880
[2] N DAKOTA STATE UNIV,DEPT MATH,FARGO,ND 58105
关键词
D O I
10.1002/(SICI)1097-0118(199601)21:1<103::AID-JGT13>3.3.CO;2-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1963, Vizing [Vichysl. Sistemy 9 (1963), 30-43] conjectured that gamma(G x H) greater than or equal to gamma(G)gamma(H), where G x H denotes the cartesian product of graphs, and gamma(G) is the domination number. In this paper we define the extraction number x(G) and we prove that P-2(G) less than or equal to x(G) less than or equal to gamma(G), and gamma(G x H) greater than or equal to x(G)gamma(H), where P-2(G) is the 2-packing number of G. Though the equality x(G) = gamma(G) is proven to hold in several classes of graphs, we construct an Infinite family of graphs which do not satisfy this condition. Also, we show the following lower bound: gamma(G x H) greater than or equal to gamma(G)P-2(H) + P-2(G)(gamma(H) - P-2(H)). (C) 1996 John Wiley & Sons, Inc.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 50 条
  • [41] Behzad-Vizing conjecture and Cartesian-product graphs
    Zmazek, B
    Zerovnik, J
    APPLIED MATHEMATICS LETTERS, 2002, 15 (06) : 781 - 784
  • [42] Towards a computational proof of Vizing's conjecture using semidefinite programming and sums-of-squares *,**
    Gaar, Elisabeth
    Krenn, Daniel
    Margulies, Susan
    Wiegele, Angelika
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 107 : 67 - 105
  • [43] Unimodality of partition polynomials related to Borwein′s conjecture
    Dong, Janet J. W.
    Ji, Kathy Q. Q.
    RAMANUJAN JOURNAL, 2023, 61 (04): : 1063 - 1076
  • [44] Unimodality of partition polynomials related to Borwein’s conjecture
    Janet J. W. Dong
    Kathy Q. Ji
    The Ramanujan Journal, 2023, 61 : 1063 - 1076
  • [45] The Gold Partition Conjecture
    Marcin Peczarski
    Order, 2006, 23 : 89 - 95
  • [46] Vizing-like conjecture for the upper domination of Cartesian products of graphs - the proof
    Bresar, B
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [47] ON A MATRIX PARTITION CONJECTURE
    BRUALDI, RA
    HAHN, G
    HORAK, P
    KRAMER, ES
    MELLENDORF, S
    MESNER, DM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (02) : 333 - 346
  • [48] The Gold Partition Conjecture
    Peczarski, Marcin
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (01): : 89 - 95
  • [49] A proof of Mao’s conjecture on an identity of Beck’s partition statistics
    Renrong Mao
    Ernest X. W. Xia
    The Ramanujan Journal, 2023, 62 : 633 - 648
  • [50] A proof of Mao's conjecture on an identity of Beck's partition statistics
    Mao, Renrong
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2023, 62 (02): : 633 - 648